Immune landscape and a novel immunotherapy-related gene signature associated with clinical outcome in early-stage lung adenocarcinoma

被引:20
作者
Bao, Xuanwen [1 ,2 ]
Shi, Run [3 ]
Zhao, Tianyu [4 ,5 ,6 ,7 ,8 ]
Wang, Yanfang [9 ]
机构
[1] German Res Ctr Environm Hlth, Helmholtz Ctr Munich, Inst Radiat Biol, Oberschleissheim, Germany
[2] TUM, Munich, Germany
[3] Ludwig Maximilian Univ Munich, Univ Hosp, Dept Radiat Oncol, Munich, Germany
[4] Ludwig Maximilian Univ Munich, Univ Hosp, Inst & Clin Occupat Social & Environm Med, Munich, Germany
[5] Comprehens Pneumol Ctr CPC Munich, Munich, Germany
[6] DZL, Munich, Germany
[7] German Ctr Lung Res, Munich, Germany
[8] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Epidemiol, Oberschleissheim, Germany
[9] Ludwig Maximilians Univ Munchen LMU, Munich, Germany
来源
JOURNAL OF MOLECULAR MEDICINE-JMM | 2020年 / 98卷 / 06期
关键词
Early-stage lung adenocarcinoma (LUAD); Immune landscape; Prognostic model; Overall survival; MICROENVIRONMENT; ATEZOLIZUMAB; MUTATIONS; CELLS; RATIO;
D O I
10.1007/s00109-020-01908-9
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Patients with early-stage lung adenocarcinoma (LUAD) exhibit different overall survival (OS) rates and immunotherapy responses. Understanding the immune landscape facilitates the personalized treatment of LUAD. The immune cell populations in tumour tissues were quantified to depict the immune landscape in early-stage LUAD patients in The Cancer Genome Atlas (TCGA). Early-stage LUAD patients in three immune clusters identified by the immune landscape exhibited different survival potentials. A prognostic immune-related gene signature was built to predict the survival of early-stage LUAD patients. Several machine learning methods (support vector machine, naive Bayes, random forest, and neural network-based deep learning) were applied to train the classifiers to identify the immune clusters in early-stage LUAD based on the gene signature. The four classifiers exhibited a robust effect in identifying the immune clusters. A random forest regression model identified that TP53 was the most important gene mutation associated with the immune-related signature. Furthermore, a decision tree and a nomogram were constructed based on the immune-related gene signature and clinicopathological traits to improve risk stratification and quantify risk assessment for individual patients. Five external test cohorts were applied to validate the accuracy of the immune-related signature. Our study might contribute to the development of immunotherapy and the personalized treatment of early-stage LUAD. Key messages Immune landscape correlates with the clinical outcome of early-stage adenocarcinoma (LUAD). Machine learning methods identifies a prognostic gene signature to predict the survival and prognosis of early-stage LUAD. TP53 gene mutation status correlates with the immune landscape in early-stage LUAD.
引用
收藏
页码:805 / 818
页数:14
相关论文
共 29 条
[1]   Systemic Inflammation, Nutritional Status and Tumor Immune Microenvironment Determine Outcome of Resected Non-Small Cell Lung Cancer [J].
Alifano, Marco ;
Mansuet-Lupo, Audrey ;
Lococo, Filippo ;
Roche, Nicolas ;
Bobbio, Antonio ;
Canny, Emelyne ;
Schussler, Olivier ;
Dermine, Herve ;
Regnard, Jean-Francois ;
Burroni, Barbara ;
Goc, Jeremy ;
Biton, Jerome ;
Ouakrim, Hanane ;
Cremer, Isabelle ;
Dieu-Nosjean, Marie-Caroline ;
Damotte, Diane .
PLOS ONE, 2014, 9 (09)
[2]  
[Anonymous], 2019, CANCER CELL INT
[3]   Mast cell-based molecular subtypes and signature associated with clinical outcome in early-stage lung adenocarcinoma [J].
Bao, Xuanwen ;
Shi, Run ;
Zhao, Tianyu ;
Wang, Yanfang .
MOLECULAR ONCOLOGY, 2020, 14 (05) :917-932
[4]   Immune Landscape of Invasive Ductal Carcinoma Tumor Microenvironment Identifies a Prognostic and Immunotherapeutically Relevant Gene Signature [J].
Bao, Xuanwen ;
Shi, Run ;
Zhang, Kai ;
Xin, Shan ;
Li, Xin ;
Zhao, Yanbo ;
Wang, Yanfang .
FRONTIERS IN ONCOLOGY, 2019, 9
[5]   Phase II, single-arm trial (BIRCH) of atezolizumab as first-line or subsequent therapy for locally advanced or metastatic PD-L1-selected non-small cell lung cancer (NSCLC) [J].
Besse, B. ;
Johnson, M. ;
Jaenne, P. A. ;
Garassino, M. ;
Eberhardt, W. E. E. ;
Peters, S. ;
Toh, C. K. ;
Kurata, T. ;
Li, Z. ;
Kowanetz, M. ;
Mocci, S. ;
Sandler, A. ;
Rizvi, N. A. .
EUROPEAN JOURNAL OF CANCER, 2015, 51 :S717-S718
[6]   Spatiotemporal Dynamics of Intratumoral Immune Cells Reveal the Immune Landscape in Human Cancer [J].
Bindea, Gabriela ;
Mlecnik, Bernhard ;
Tosolini, Marie ;
Kirilovsky, Amos ;
Waldner, Maximilian ;
Obenauf, Anna C. ;
Angell, Helen ;
Fredriksen, Tessa ;
Lafontaine, Lucie ;
Berger, Anne ;
Bruneval, Patrick ;
Fridman, Wolf Herman ;
Becker, Christoph ;
Pages, Franck ;
Speicher, Michael R. ;
Trajanoski, Zlatko ;
Galon, Jerome .
IMMUNITY, 2013, 39 (04) :782-795
[7]  
CHAFT JE, 2017, AM SOC CLIN ONCOL
[8]   The IL-6/JAK/Stat3 Feed-Forward Loop Drives Tumorigenesis and Metastasis [J].
Chang, Qing ;
Bournazou, Eirini ;
Sansone, Pasquale ;
Berishaj, Marjan ;
Gao, Sizhi Paul ;
Daly, Laura ;
Wels, Jared ;
Theilen, Till ;
Granitto, Selena ;
Zhang, Xinmin ;
Cotari, Jesse ;
Alpaugh, Mary L. ;
de Stanchina, Elisa ;
Manova, Katia ;
Li, Ming ;
Bonafe, Massimiliano ;
Ceccarelli, Claudio ;
Taffurelli, Mario ;
Santini, Donatella ;
Altan-Bonnet, Gregoire ;
Kaplan, Rosandra ;
Norton, Larry ;
Nishimoto, Norihiro ;
Huszar, Dennis ;
Lyden, David ;
Bromberg, Jacqueline .
NEOPLASIA, 2013, 15 (07) :848-+
[9]  
CHOW MT, 2012, SEMINARS CANC BIOL
[10]   Positive Cross-Talk between Estrogen Receptor and NF-kB in Breast Cancer [J].
Frasor, Jonna ;
Weaver, Aisha ;
Pradhan, Madhumita ;
Dai, Yang ;
Miller, Lance D. ;
Lin, Chin-Yo ;
Stanculescu, Adina .
CANCER RESEARCH, 2009, 69 (23) :8918-8925