Active Ornstein-Uhlenbeck model for self-propelled particles with inertia

被引:52
|
作者
Nguyen, G. H. Philipp [1 ]
Wittmann, Rene [1 ]
Loewen, Hartmut [1 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Inst Theoret Phys 2 Weiche Mat, D-40225 Dusseldorf, Germany
关键词
inertial active matter; active Ornstein-Uhlenbeck particles; mean-squared displacement; dynamical exponents; active dumbbell; time-dependent mass; BROWNIAN PARTICLES; COLORED NOISE; MOTION;
D O I
10.1088/1361-648X/ac2c3f
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Self-propelled particles, which convert energy into mechanical motion, exhibit inertia if they have a macroscopic size or move inside a gaseous medium, in contrast to micron-sized overdamped particles immersed in a viscous fluid. Here we study an extension of the active Ornstein-Uhlenbeck model, in which self-propulsion is described by colored noise, to access these inertial effects. We summarize and discuss analytical solutions of the particle's mean-squared displacement and velocity autocorrelation function for several settings ranging from a free particle to various external influences, like a linear or harmonic potential and coupling to another particle via a harmonic spring. Taking into account the particular role of the initial particle velocity in a nonstationary setup, we observe all dynamical exponents between zero and four. After the typical inertial time, determined by the particle's mass, the results inherently revert to the behavior of an overdamped particle with the exception of the harmonically confined systems, in which the overall displacement is enhanced by inertia. We further consider an underdamped model for an active particle with a time-dependent mass, which critically affects the displacement in the intermediate time-regime. Most strikingly, for a sufficiently large rate of mass accumulation, the particle's motion is completely governed by inertial effects as it remains superdiffusive for all times.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Dynamics of self-propelled nanomotors in chemically active media
    Thakur, Snigdha
    Kapral, Raymond
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (02)
  • [32] Collective behavior in groups of self-propelled particles with active and passive sensing inspired by animal echolocation
    Shirazi, Masoud Jahromi
    Abaid, Nicole
    PHYSICAL REVIEW E, 2018, 98 (04)
  • [33] Run-and-tumble dynamics of self-propelled particles in confinement
    Elgeti, Jens
    Gompper, Gerhard
    EPL, 2015, 109 (05)
  • [34] Clusterization of self-propelled particles in a two-component system
    Paul, Shibashis
    Bhattacharyya, Debankur
    Ray, Deb Shankar
    PHYSICAL REVIEW E, 2020, 101 (01)
  • [35] Boundary induced convection in a collection of polar self-propelled particles
    Mishra, Shradha
    Pattanayak, Sudipta
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 477 : 128 - 135
  • [36] Effects of elasticity on the nonlinear collective dynamics of self-propelled particles
    Bozorgi, Yaser
    Underhill, Patrick T.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2014, 214 : 69 - 77
  • [37] Rectified transport of self-propelled particles: the role of alignment interaction
    Ai, Bao-Quan
    Zhu, Wei-Jing
    He, Ya-Feng
    Zhong, Wei-Rong
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [38] Collective Dynamics of Deformable Self-Propelled Particles with Repulsive Interaction
    Itino, Yu
    Ohkuma, Takahiro
    Ohta, Takao
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2011, 80 (03)
  • [39] Effects of hydrodynamic interactions on rectified transport of self-propelled particles
    Ai, Bao-quan
    He, Ya-feng
    Zhong, Wei-rong
    PHYSICAL REVIEW E, 2017, 95 (01)
  • [40] Large density expansion of a hydrodynamic theory for self-propelled particles
    Ihle, T.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (07) : 1303 - 1324