Photodeposition of metal sulfide quantum dots on titanium(IV) dioxide and the applications to solar energy conversion

被引:206
作者
Tada, Hiroaki [1 ]
Fujishima, Musashi [1 ]
Kobayashi, Hisayoshi [2 ]
机构
[1] Kinki Univ, Dept Appl Chem, Sch Sci & Engn, Osaka 5778502, Japan
[2] Kyoto Inst Technol, Dept Chem & Mat Technol, Sakyo Ku, Kyoto 6068585, Japan
关键词
PRUSSIAN-BLUE; ELECTRON-TRANSFER; H-2; EVOLUTION; TIO2; CDS; DYE; CELLS; DEPOSITION; BEHAVIOR; OXIDES;
D O I
10.1039/c0cs00211a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Heteronanojunction systems consisting of narrow gap semiconductors represented by metal sulfides and TiO2 are highly expected as visible-light-active photocatalysts and the key materials for various photoelectrochemical devices. The common central issue is increasing efficiency of the light-induced interfacial electron transfer from the metal sulfide quantum dots (QDs) to TiO2. We have newly developed simple and versatile low-temperature photodeposition techniques for directly coupling metal sulfide QDs and TiO2 by taking advantage of its photocatalysis and the photoinduced surface superhydrophilicity. This critical review summarizes the recent developments in the photodeposition techniques and their unique characteristics. Subsequently to the Introduction, a theoretical view of the interfacial electron transfer is presented to obtain the guidelines for the design of the heteronanojunction systems. Then, the itemized description is given for the photodepositions of several kinds of metal sulfides on TiO2 followed by the summary of the features of the photodeposition technique. Finally, the applications of the resulting heteronanojunction systems to the photocatalysts and QD-sensitized solar cells are described, and the excellent performances are discussed by relating with the features of the photodeposition technique (87 references).
引用
收藏
页码:4232 / 4243
页数:12
相关论文
共 87 条
[1]   Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures [J].
Baker, David R. ;
Kamat, Prashant V. .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (05) :805-811
[2]   Electron transfer dynamics in quantum dot/titanium dioxide composites formed by in situ chemical bath deposition [J].
Blackburn, JL ;
Selmarten, DC ;
Nozik, AJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (51) :14154-14157
[4]   Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells [J].
Chang, Chi-Hsiu ;
Lee, Yuh-Lang .
APPLIED PHYSICS LETTERS, 2007, 91 (05)
[5]   High-Performance Nanostructured Inorganic-Organic Heterojunction Solar Cells [J].
Chang, Jeong Ah ;
Rhee, Jae Hui ;
Im, Sang Hyuk ;
Lee, Yong Hui ;
Kim, Hi-jung ;
Seok, Sang Il ;
Nazeeruddin, Md K. ;
Gratzel, Michael .
NANO LETTERS, 2010, 10 (07) :2609-2612
[6]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[7]   Underpotential photocatalytic deposition: A new preparative route to composite semiconductors [J].
Chenthamarakshan, CR ;
Ming, Y ;
Rajeshwar, K .
CHEMISTRY OF MATERIALS, 2000, 12 (12) :3538-+
[8]   Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide [J].
Chiang, K ;
Amal, R ;
Tran, T .
ADVANCES IN ENVIRONMENTAL RESEARCH, 2002, 6 (04) :471-485
[9]   Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films:: Free energy vs distance dependence [J].
Clifford, JN ;
Palomares, E ;
Nazeeruddin, MK ;
Grätzel, M ;
Nelson, J ;
Li, X ;
Long, NJ ;
Durrant, JR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (16) :5225-5233
[10]   Distance-Dependent Electron Transfer in Tethered Assemblies of CdS Quantum Dots and TiO2 Nanoparticles [J].
Dibbell, Rachel S. ;
Watson, David F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (08) :3139-3149