The graph Ramsey number R(Fl, K6)

被引:3
作者
Kadota, Shin-Ya [1 ]
Onozuka, Tomokazu [2 ]
Suzuki, Yuta [3 ]
机构
[1] Niihama Coll, Natl Inst Technol, Yagumocho, Ehime 7928580, Japan
[2] Kyushu Univ, Multiple Zeta Res Ctr, Nishi Ku, Fukuoka, Fukuoka 8190395, Japan
[3] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
Ramsey number; Fan graph; Complete graph;
D O I
10.1016/j.disc.2018.12.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given pair of two graphs (F, H), let R(F, H) be the smallest positive integer r such that for any graph G of order r, either G contains F as a subgraph or the complement of G contains H as a subgraph. Baskoro, Broersma and Surahmat (2005) conjectured that R(F-l, K-n) = 2l(n - 1) + 1 for l >= n >= 3, where F-l is the join K-1 + lK(2) of K-1 and lK(2). In this paper, we prove that this conjecture is true for the case n = 6. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1028 / 1037
页数:10
相关论文
共 8 条
[1]  
Baskoro Surahmat ET., 2005, B I COMBIN APPL, V43, P96
[2]   GENERALIZED RAMSEY THEORY FOR GRAPHS .3. SMALL OFF-DIAGONAL NUMBERS [J].
CHVATAL, V ;
HARARY, F .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 41 (02) :335-&
[3]  
Diestel Reinhard, 2010, GRAPH THEORY, V4th
[4]  
Gupta S.K., 1997, J COMB, V22, P85
[5]  
Li YS, 1996, J GRAPH THEOR, V23, P413, DOI 10.1002/(SICI)1097-0118(199612)23:4<413::AID-JGT10>3.0.CO
[6]  
2-D
[7]   RAMSEY NUMBER R(F,KM) WHERE F IS A FOREST [J].
STAHL, S .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1975, 27 (03) :585-589
[8]   The Ramsey numbers of fans versus a complete graph of order five [J].
Zhang, Yanbo ;
Chen, Yaojun .
ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2014, 2 (01) :66-69