Artificial intelligence enhanced mathematical modeling on rotary triboelectric nanogenerators under various kinematic and geometric conditions

被引:34
作者
Khorsand, Mohammad [1 ]
Tavakoli, Javad [2 ]
Guan, Haowen [1 ]
Tang, Youhong [1 ]
机构
[1] Flinders Univ S Australia, Inst NanoScale Sci & Technol, Coll Sci & Engn, Bedford Pk, SA 5042, Australia
[2] Univ Technol Sydney, Sch Biomed Engn, Sydney, NSW 2007, Australia
关键词
Energy harvesting; Rotary triboelectric nanogenerators; Nanoenergy; Optimality; High output power; ENERGY; CONTACT;
D O I
10.1016/j.nanoen.2020.104993
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The triboelectric nanogenerator (TENG) has been introduced as a revolutionary technology in the renewable electrical energy generation at micro/nanoscale. In the current study, experimental and theoretical models for augmented rotary TENGs are presented. The power generated by TENGs is found to be a function of the number of segments, rotational speed, and tribo-surface spacing. Mathematical modeling combined with artificial intelligence is applied to characterize the TENG output under various kinematics and geometric conditions. Sensitivity analysis reveals that the generated energy and the matched resistance depend highly on segmentation and angular velocity rate. It is shown that the optimized harvested energy reaches 0.369 mJ at each cycle. The TENG dynamic outputs for various structural parameters are found and described. This study enhances understanding of rotation-induced periodic TENGs and reveals optimized characteristics for disk-shaped TENG energy harvesters.
引用
收藏
页数:12
相关论文
共 48 条
[1]   A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity [J].
Ahmed, Riaz ;
Mir, Fariha ;
Banerjee, Sourav .
SMART MATERIALS AND STRUCTURES, 2017, 26 (08)
[2]   Sustainable Energy Harvesting through Triboelectric Nano - Generators: A Review of current status and applications [J].
Barkas, D. A. ;
Psomopoulos, C. S. ;
Papageorgas, P. ;
Kalkanis, K. ;
Piromalis, D. ;
Mouratidis, A. .
TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY (TMREES), 2019, 157 :999-1010
[3]   Inductor-Free Wireless Energy Delivery via Maxwell's Displacement Current from an Electrodeless Triboelectric Nanogenerator [J].
Cao, Xia ;
Zhang, Meng ;
Huang, Jinrong ;
Jiang, Tao ;
Zou, Jingdian ;
Wang, Ning ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2018, 30 (06)
[4]   Triboelectric Nanogenerators Driven Self-Powered Electrochemical Processes for Energy and Environmental Science [J].
Cao, Xia ;
Jie, Yang ;
Wang, Ning ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2016, 6 (23)
[5]   Review on Electrodynamic Energy Harvesters-A Classification Approach [J].
Cepnik, Clemens ;
Lausecker, Roland ;
Wallrabe, Ulrike .
MICROMACHINES, 2013, 4 (02) :168-196
[6]   Energy harvesting and wireless power transmission by a hybridized electromagnetic-triboelectric nanogenerator [J].
Chen, Yandong ;
Cheng, Yu ;
Jie, Yang ;
Cao, Xia ;
Wang, Ning ;
Wan, Zhong Lin .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (09) :2678-2684
[7]   A unified theoretical model for Triboelectric Nanogenerators [J].
Dharmasena, R. D. I. G. ;
Jayawardena, K. D. G. I. ;
Mills, C. A. ;
Dorey, R. A. ;
Silva, S. R. P. .
NANO ENERGY, 2018, 48 :391-400
[8]   Nanowires for energy: A review [J].
Goktas, N. I. ;
Wilson, P. ;
Ghukasyan, A. ;
Wagner, D. ;
McNamee, S. ;
LaPierre, R. R. .
APPLIED PHYSICS REVIEWS, 2018, 5 (04)
[9]   TRIBOELECTRICITY IN POLYMERS [J].
HENNIKER, J .
NATURE, 1962, 196 (4853) :474-&
[10]   Theoretical study on rotary-sliding disk triboelectric nanogenerators in contact and non-contact modes [J].
Jiang, Tao ;
Chen, Xiangyu ;
Yang, Keda ;
Han, Changbao ;
Tang, Wei ;
Wang, Zhong Lin .
NANO RESEARCH, 2016, 9 (04) :1057-1070