A new approach to relative asymptotic behavior for discrete Sobolev-type orthogonal polynomials on the unit circle

被引:4
作者
Castillo, Kenier [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
关键词
Sobolev inner product; Orthogonal polynomials on the unit circle; Nevai-Blumenthal class; Relative asymptotic;
D O I
10.1016/j.aml.2011.11.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Foulquie et al. (1999) [2], Li and Marcellan (1996) [4], Marcellan and Moral (2002) [5], the relative asymptotic behavior of orthogonal polynomials with respect to a discrete Sobolev-type inner product on the unit circle was studied. In this paper, we propose an alternative approach to this problem based on the Uvarov spectral transformation. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1000 / 1004
页数:5
相关论文
共 8 条
[1]   A new linear spectral transformation associated with derivatives of Dirac linear functionals [J].
Castillo, Kenier ;
Garza, Luis E. ;
Marcellan, Francisco .
JOURNAL OF APPROXIMATION THEORY, 2011, 163 (12) :1834-1853
[2]   Spectral transformations for Hermitian Toeplitz matrices [J].
Daruis, Leyla ;
Hernandez, Javier ;
Marcellan, Francisco .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 202 (02) :155-176
[3]   On polynomials orthogonal with respect to Sobolev inner product on the unit circle [J].
Li, X ;
Marcellan, F .
PACIFIC JOURNAL OF MATHEMATICS, 1996, 175 (01) :127-146
[4]   RELATIVE ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO A DISCRETE SOBOLEV INNER-PRODUCT [J].
LOPEZ, G ;
MARCELLAN, F ;
VANASSCHE, W .
CONSTRUCTIVE APPROXIMATION, 1995, 11 (01) :107-137
[5]  
Marcellan F., 2002, APPL MATH COMPUT, V128, P107
[6]  
MATE A, 1987, CONSTR APPROX, V3, P51, DOI 10.1007/BF01890553
[7]  
Moreno AF, 1999, J APPROX THEORY, V100, P345
[8]  
SIMON B, 2005, AM MATH SOC C PUBL S, V54