Genetic and Epigenetic Effects of Plant-Pathogen Interactions: An Evolutionary Perspective

被引:55
|
作者
Boyko, Alex [2 ]
Kovalchuk, Igor [1 ]
机构
[1] Univ Lethbridge, Dept Biol Sci, Lethbridge, AB T1K 3M4, Canada
[2] Univ Zurich, Inst Plant Biol, CH-8008 Zurich, Switzerland
基金
加拿大自然科学与工程研究理事会;
关键词
Abiotic and biotic stress; Arabidopsis thaliana; genetic and epigenetic response; genome stability; genome evolution; methylation pattern; Nicotiana tabacum; transgenerational effect; SYSTEMIC ACQUIRED-RESISTANCE; DNA-METHYLATION; GENOME STABILITY; ABIOTIC-STRESS; RECOMBINATION FREQUENCY; OXIDATIVE BURST; SIGNAL NETWORK; MOSAIC-VIRUS; SMALL RNAS; ARABIDOPSIS;
D O I
10.1093/mp/ssr022
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent reports suggest that exposure to stress is capable of influencing the frequency and pattern of inherited changes in various parts of the genome. In this review, we will discuss the influence of viral pathogens on somatic and meiotic genome stability of Nicotiana tabacum and Arabidopsis thaliana. Plants infected with a compatible pathogen generate a systemic recombination signal that precedes the spread of pathogens and results in changes in the somatic and meiotic recombination frequency. The progeny of infected plants exhibit changes in global and locus-specific DNA methylation patterns, genomic rearrangements at transgenic reporter loci and resistance gene-like-loci, and even tolerance to pathogen infection and abiotic stress. Here, we will discuss the contribution of environmental stresses to genome evolution and will focus on the role of heritable epigenetic changes in response to pathogen infection.
引用
收藏
页码:1014 / 1023
页数:10
相关论文
共 50 条
  • [31] Population genomics of plant-pathogen interactions
    Terauchi, Ryohei
    GENES & GENETIC SYSTEMS, 2013, 88 (06) : 349 - 349
  • [32] Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions
    Zeier, J
    Delledonne, M
    Mishina, T
    Severi, E
    Sonoda, M
    Lamb, C
    PLANT PHYSIOLOGY, 2004, 136 (01) : 2875 - 2886
  • [33] Nucleus at the frontline of plant-pathogen interactions
    不详
    NUCLEUS-AUSTIN, 2011, 2 (02): : 81 - 81
  • [34] Recognition and response in plant-pathogen interactions
    Park, Jeong Mee
    Paek, Kyung Hee
    JOURNAL OF PLANT BIOLOGY, 2007, 50 (02) : 132 - 138
  • [35] Plant integrity An important factor in plant-pathogen interactions
    Orlowska, Elzbieta
    Llorente, Briardo
    Cvitanich, Cristina
    PLANT SIGNALING & BEHAVIOR, 2013, 8 (01) : 131 - 133
  • [36] Xanthomonas diversity, virulence and plant-pathogen interactions
    Timilsina, Sujan
    Potnis, Neha
    Newberry, Eric A.
    Liyanapathiranage, Prabha
    Iruegas-Bocardo, Fernanda
    White, Frank F.
    Goss, Erica M.
    Jones, Jeffrey B.
    NATURE REVIEWS MICROBIOLOGY, 2020, 18 (08) : 415 - 427
  • [37] THE ROLE OF CYANIDE AND CYANOGENESIS IN PLANT-PATHOGEN INTERACTIONS
    LIEBEREI
    CONN
    BRIMER
    YANG
    NAHRSTEDT
    BUNGARD
    KNOWLES
    INGVORSEN
    WESTLEY
    CIBA FOUNDATION SYMPOSIA, 1988, 140 : 171 - 176
  • [38] Plasmodesmal regulation during plant-pathogen interactions
    Cheval, Cecilia
    Faulkner, Christine
    NEW PHYTOLOGIST, 2018, 217 (01) : 62 - 67
  • [39] Editorial: Insights in plant-pathogen interactions: 2023
    Ryu, Choong-Min
    Mauch-Mani, Brigitte
    FRONTIERS IN PLANT SCIENCE, 2025, 16
  • [40] The role of oomycete effectors in plant-pathogen interactions
    Hardham, Adrienne R.
    Cahill, David M.
    FUNCTIONAL PLANT BIOLOGY, 2010, 37 (10) : 919 - 925