ODE integration schemes for plane-wave real-time time-dependent density functional theory

被引:7
作者
Rehn, Daniel A. [1 ,2 ]
Shen, Yuan [3 ]
Buchholz, Marika E. [4 ]
Dubey, Madan [5 ]
Namburu, Raju [5 ]
Reed, Evan J. [6 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[4] Stanford Univ, Symbol Syst, Stanford, CA 94305 USA
[5] US Army, Res Lab, 2800 Powder Mill Rd, Adelphi, MD 20783 USA
[6] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
关键词
ENERGY;
D O I
10.1063/1.5056258
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Integration schemes are implemented with a plane-wave basis in the context of real-time time-dependent density functional theory. Crank-Nicolson methods and three classes of explicit integration schemes are explored and assessed in terms of their accuracy and stability properties. Within the framework of plane-wave density functional theory, a graphene monolayer system is used to investigate the error, stability, and serial computational cost of these methods. The results indicate that Adams-Bashforth and Adams-Bashforth-Moulton methods of orders 4 and 5 outperform commonly used methods, including Crank-Nicolson and Runge-Kutta methods, in simulations where a relatively low error is desired. Parallel runtime scaling of the most competitive serial methods is presented, further demonstrating that the Adams-Bashforth and Adams-Bashforth-Moulton methods are efficient methods for propagating the time-dependent Kohn-Sham equations. Our integration schemes are implemented as an extension to the Quantum ESPRESSO code. Published under license by AIP Publishing.
引用
收藏
页数:16
相关论文
共 33 条
  • [1] Special optimized Runge-Kutta methods for IVPs with oscillating solutions
    Anastassi, ZA
    Simos, TE
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2004, 15 (01): : 1 - 15
  • [2] [Anonymous], SPRINGER SERIES COMP
  • [3] [Anonymous], 2003, QUANTUM THEORY MANY
  • [4] Ashcroft N.W., 1976, SOLID STATE PHYS
  • [5] Butcher J. C., 1964, J AUSTRALIAN MATH SO, V4, P179, DOI 10.1017/S1446788700023387
  • [6] A history of Runge-Kutta methods
    Butcher, JC
    [J]. APPLIED NUMERICAL MATHEMATICS, 1996, 20 (03) : 247 - 260
  • [7] Propagators for the time-dependent Kohn-Sham equations
    Castro, A
    Marques, MAL
    Rubio, A
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (08) : 3425 - 3433
  • [8] Simulating molecular conductance using real-time density functional theory
    Cheng, Chiao-Lun
    Evans, Jeremy S.
    Van Voorhis, Troy
    [J]. PHYSICAL REVIEW B, 2006, 74 (15)
  • [9] Stability ordinates of Adams predictor-corrector methods
    Ghrist, Michelle L.
    Fornberg, Bengt
    Reeger, Jonah A.
    [J]. BIT NUMERICAL MATHEMATICS, 2015, 55 (03) : 733 - 750
  • [10] Advanced capabilities for materials modelling with QUANTUM ESPRESSO
    Giannozzi, P.
    Andreussi, O.
    Brumme, T.
    Bunau, O.
    Nardelli, M. Buongiorno
    Calandra, M.
    Car, R.
    Cavazzoni, C.
    Ceresoli, D.
    Cococcioni, M.
    Colonna, N.
    Carnimeo, I.
    Dal Corso, A.
    de Gironcoli, S.
    Delugas, P.
    DiStasio, R. A., Jr.
    Ferretti, A.
    Floris, A.
    Fratesi, G.
    Fugallo, G.
    Gebauer, R.
    Gerstmann, U.
    Giustino, F.
    Gorni, T.
    Jia, J.
    Kawamura, M.
    Ko, H-Y
    Kokalj, A.
    Kucukbenli, E.
    Lazzeri, M.
    Marsili, M.
    Marzari, N.
    Mauri, F.
    Nguyen, N. L.
    Nguyen, H-V
    Otero-de-la-Roza, A.
    Paulatto, L.
    Ponce, S.
    Rocca, D.
    Sabatini, R.
    Santra, B.
    Schlipf, M.
    Seitsonen, A. P.
    Smogunov, A.
    Timrov, I.
    Thonhauser, T.
    Umari, P.
    Vast, N.
    Wu, X.
    Baroni, S.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (46)