Hybrid recommendation methods in complex networks

被引:25
作者
Fiasconaro, A. [1 ]
Tumminello, M. [2 ]
Nicosia, V. [1 ]
Latora, V. [1 ,3 ,4 ]
Mantegna, R. N. [5 ,6 ,7 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Univ Palermo, Dipartimento Sci Econ Aziendali & Stat, I-90128 Palermo, Italy
[3] Univ Catania, Dipartimento Fis & Astron, I-95123 Catania, Italy
[4] Ist Nazl Fis Nucl, I-95123 Catania, Italy
[5] Cent European Univ, Ctr Network Sci, H-1051 Budapest, Hungary
[6] Cent European Univ, Dept Econ, H-1051 Budapest, Hungary
[7] Univ Palermo, Dipartimento Fis & Chim, I-90128 Palermo, Italy
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
INFORMATION;
D O I
10.1103/PhysRevE.92.012811
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose two recommendation methods, based on the appropriate normalization of already existing similarity measures, and on the convex combination of the recommendation scores derived from similarity between users and between objects. We validate the proposed measures on three data sets, and we compare the performance of our methods to other recommendation systems recently proposed in the literature. We show that the proposed similarity measures allow us to attain an improvement of performances of up to 20% with respect to existing nonparametric methods, and that the accuracy of a recommendation can vary widely from one specific bipartite network to another, which suggests that a careful choice of the most suitable method is highly relevant for an effective recommendation on a given system. Finally, we study how an increasing presence of random links in the network affects the recommendation scores, finding that one of the two recommendation algorithms introduced here can systematically outperform the others in noisy data sets.
引用
收藏
页数:10
相关论文
共 24 条
[1]   Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions [J].
Adomavicius, G ;
Tuzhilin, A .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (06) :734-749
[2]   Application of Web usage mining and product taxonomy to collaborative recommendations in e-commerce [J].
Cho, YH ;
Kim, JK .
EXPERT SYSTEMS WITH APPLICATIONS, 2004, 26 (02) :233-246
[3]   USING COLLABORATIVE FILTERING TO WEAVE AN INFORMATION TAPESTRY [J].
GOLDBERG, D ;
NICHOLS, D ;
OKI, BM ;
TERRY, D .
COMMUNICATIONS OF THE ACM, 1992, 35 (12) :61-70
[4]   Heat conduction information filtering via local information of bipartite networks [J].
Guo, Q. ;
Leng, R. ;
Shi, K. ;
Liu, J. G. .
EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (08)
[5]   Quantifying preferential trading in the e-MID interbank market [J].
Hatzopoulos, Vasilis ;
Iori, Giulia ;
Mantegna, Rosario N. ;
Micciche, Salvatore ;
Tumminello, Michele .
QUANTITATIVE FINANCE, 2015, 15 (04) :693-710
[6]   An algorithmic framework for performing collaborative filtering [J].
Herlocker, JL ;
Konstan, JA ;
Borchers, A ;
Riedl, J .
SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 1999, :230-237
[7]  
Jaccard P., 1912, NEW PHYTOL, V11, P37, DOI DOI 10.1111/J.1469-8137.1912.TB05611.X
[8]   Personal recommendation via modified collaborative filtering [J].
Liu, Run-Ran ;
Jia, Chun-Xiao ;
Zhou, Tao ;
Sun, Duo ;
Wang, Bing-Hong .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (04) :462-468
[9]   Recommender systems [J].
Lu, Linyuan ;
Medo, Matus ;
Yeung, Chi Ho ;
Zhang, Yi-Cheng ;
Zhang, Zi-Ke ;
Zhou, Tao .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2012, 519 (01) :1-49
[10]   Information filtering via preferential diffusion [J].
Lue, Linyuan ;
Liu, Weiping .
PHYSICAL REVIEW E, 2011, 83 (06)