A simple decomposition method for support vector machines

被引:223
作者
Hsu, CW [1 ]
Lin, CJ [1 ]
机构
[1] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 106, Taiwan
关键词
support vector machines; decomposition methods; classification;
D O I
10.1023/A:1012427100071
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The decomposition method is currently one of the major methods for solving support vector machines. An important issue of this method is the selection of working sets. In this paper through the design of decomposition methods for bound-constrained SVM formulations we demonstrate that the working set selection is not a trivial task. Then from the experimental analysis we propose a simple selection of the working set which leads to faster convergences for difficult cases. Numerical experiments on different types of problems are conducted to demonstrate the viability of the proposed method.
引用
收藏
页码:291 / 314
页数:24
相关论文
共 50 条
  • [21] Structured multicategory support vector machines with analysis of variance decomposition
    Lee, Yoonkyung
    Kim, Yuwon
    Lee, Sangjun
    Koo, Ja-Yong
    BIOMETRIKA, 2006, 93 (03) : 555 - 571
  • [22] Selective support vector machines
    Seref, Onur
    Kundakcioglu, O. Erhun
    Prokopyev, Oleg A.
    Pardalos, Panos M.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2009, 17 (01) : 3 - 20
  • [23] Binarized Support Vector Machines
    Carrizosa, Emilio
    Martin-Barragan, Belen
    Morales, Dolores Romero
    INFORMS JOURNAL ON COMPUTING, 2010, 22 (01) : 154 - 167
  • [24] Polynomial-Time Decomposition Algorithms for Support Vector Machines
    Don Hush
    Clint Scovel
    Machine Learning, 2003, 51 : 51 - 71
  • [25] Possibilistic support vector machines
    Lee, K
    Kim, DW
    Lee, KH
    Lee, D
    PATTERN RECOGNITION, 2005, 38 (08) : 1325 - 1327
  • [26] A Method to Reduce Samples for Support Vector Machines
    Zhang, Guodong
    Zhou, Ju
    Guo, Wei
    2014 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY AND VISUALIZATION (ICVRV2014), 2014, : 248 - 253
  • [27] Selective support vector machines
    Onur Seref
    O. Erhun Kundakcioglu
    Oleg A. Prokopyev
    Panos M. Pardalos
    Journal of Combinatorial Optimization, 2009, 17 : 3 - 20
  • [28] A Method of Identifying Electromagnetic Radiation Sources by Using Support Vector Machines
    Shi Dan
    Gao Yougang
    CHINA COMMUNICATIONS, 2013, 10 (07) : 36 - 43
  • [29] Feature selection for support vector machines using Generalized Benders Decomposition
    Aytug, Haldun
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 244 (01) : 210 - 218
  • [30] Face Recognition Algorithm Using Wavelet Decomposition and Support Vector Machines
    Wang, Wei
    Sun, Xiang-yu
    Karungaru, Stephen
    Terada, Kenji
    2012 INTERNATIONAL SYMPOSIUM ON OPTOMECHATRONIC TECHNOLOGIES (ISOT), 2012,