Low-cost urchin-like silicon-based anode with superior conductivity for lithium storage applications

被引:29
作者
Guan, Peng [1 ]
Zhang, Wei [1 ]
Li, Chengyu [1 ]
Han, Na [1 ]
Wang, Xuechen [1 ]
Li, Qiaofeng [1 ]
Song, Guojun [1 ]
Peng, Zhi [1 ]
Li, Jianjiang [1 ,2 ]
Zhang, Lei [3 ]
Zhu, Xiaoyi [1 ]
机构
[1] Qingdao Univ, Chem Expt Teaching Ctr, Sch Mat Sci & Engn,Micro Composite Mat Key Lab Sh, Sch Environm Sci & Engn,Sch Chem & Chem Engn,Sch, 308 Ningxia Rd, Qingdao 266071, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Key Lab Elect Insulat & Thermal Aging, Shanghai 200240, Peoples R China
[3] Griffith Univ, Ctr Clean Environm & Energy, Gold Coast Campus, Gold Coast, Qld 4222, Australia
基金
中国博士后科学基金;
关键词
Superior conductivity; Urchin-like structure; Silicon; Anode; Lithium ion battery; HIGH-PERFORMANCE ANODE; CORE-SHELL STRUCTURE; ION BATTERIES; POROUS SILICON; SCALABLE SYNTHESIS; CARBON NANOTUBES; SI/C COMPOSITE; AT-CARBON; MICROSPHERES; NANOPARTICLES;
D O I
10.1016/j.jcis.2020.04.082
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Poor rate and cycling performance are the most critical drawbacks for Si-based anodes on account of their inferior conductivity and colossal volumetric expansion during lithiation/delithiation. Here we report the fabrication of structurally-integrated urchin-like Si anode, which provides prominent structural stability and distinguished electron and ion transmission pathways for lithium storage. The inexpensive solid Si waste from organosilane industry after acid-washed and further ball-milling serves as the pristine Si-source in this work. Carbon nanotubes (CNTs) are in-situ grown outside Si microparticles, resulting in an urchin-like structure (Si/CNTs). The optimized Si/CNTs presents ascendant invertible capacity and rate performance, achieving up to 920 mAh g(-1) beyond 100 cycles at 100 mA g(-1), and a capacity of 606.2 mAh g(-1) at 1 A g(-1) after long cycling for 1000 cycles. The proposed scalable synthesis can be adopted to advance the performance of other electrode materials with inferior conductivity and enormous volume expansions during cycling. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:150 / 157
页数:8
相关论文
共 52 条
[1]   Spherical nanostructured Si/C composite prepared by spray drying technique for lithium ion batteries anode [J].
Chen, Libao ;
Xie, Xiaohua ;
Wang, Baofeng ;
Wang, Ke ;
Xie, Jingying .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 131 (1-3) :186-190
[2]   Facile synthesizing silicon waste/carbon composites via rapid thermal process for lithium-ion battery anode [J].
Chen, Ren-Chin ;
Hsiao, Lin-Yin ;
Wu, Cheng-Yu ;
Duh, Jenq-Gong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 791 :19-29
[3]   Synthesis of CuS@CoS2 Double-Shelled Nanoboxes with Enhanced Sodium Storage Properties [J].
Fang, Yongjin ;
Guan, Bu Yuan ;
Luan, Deyan ;
Lou, Xiong Wen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (23) :7739-7743
[4]   Nano/micro-structured Si/CNT/C composite from nano-SiO2 for high power lithium ion batteries [J].
Feng, Xuejiao ;
Yang, Jun ;
Bie, Yitian ;
Wang, Jiulin ;
Nuli, Yanna ;
Lu, Wei .
NANOSCALE, 2014, 6 (21) :12532-12539
[5]   Review on recent progress of nanostructured anode materials for Li-ion batteries [J].
Goriparti, Subrahmanyam ;
Miele, Ermanno ;
De Angelis, Francesco ;
Di Fabrizio, Enzo ;
Zaccaria, Remo Proietti ;
Capiglia, Claudio .
JOURNAL OF POWER SOURCES, 2014, 257 :421-443
[6]   Facile and Scalable Approach To Fabricate Granadilla-like Porous-Structured Silicon-Based Anode for Lithium Ion Batteries [J].
Guan, Peng ;
Li, Jianjiang ;
Lu, Taige ;
Guan, Tong ;
Ma, Zhaoli ;
Peng, Zhi ;
Zhu, Xiaoyi ;
Zhang, Lei .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (40) :34283-34290
[7]   Tunable Synthesis of Yolk-Shell Porous Silicon@Carbon for Optimizing Si/C-Based Anode of Lithium-Ion Batteries [J].
Guo, Sichang ;
Hu, Xiang ;
Hou, Yang ;
Wen, Zhenhai .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (48) :42084-42092
[8]   Silicon nanoparticles prepared from industrial wastes as high-performing anode materials for lithium ion batteries [J].
He, Qian ;
Yu, Jing ;
Wang, Yanhong ;
Zhong, Ziyi ;
Jiang, Jiaxing ;
Su, Fabing .
SOLID STATE IONICS, 2018, 325 :141-147
[9]   Scalable production of 3D plum-pudding-like Si/C spheres: Towards practical application in Li-ion batteries [J].
Hou, Guolin ;
Cheng, Benli ;
Cao, Yuebin ;
Yao, Mingshui ;
Li, Baoqiang ;
Zhang, Chao ;
Weng, Qunhong ;
Wang, Xi ;
Bando, Yoshio ;
Golberg, Dmitri ;
Yuan, Fangli .
NANO ENERGY, 2016, 24 :111-120
[10]   A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries [J].
Jia, Haiping ;
Zheng, Jianming ;
Song, Junhua ;
Luo, Langli ;
Yi, Ran ;
Estevez, Luis ;
Zhao, Wengao ;
Patel, Rajankumar ;
Li, Xiaolin ;
Zhang, Ji-Guang .
NANO ENERGY, 2018, 50 :589-597