On unitary equivalence to a self-adjoint or doubly positive Hankel operator

被引:0
|
作者
Martin, Robert T. W. [1 ]
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB, Canada
来源
CONCRETE OPERATORS | 2022年 / 9卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
Hankel operators; Linear symmetric and self-adjoint operators (unbounded); sesquilinear forms;
D O I
10.1515/conop-2022-0132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a bounded, injective and self-adjoint linear operator on a complex separable Hilbert space. We prove that there is a pure isometry, V, so that AV > 0 and A is Hankel with respect to V, i.e. V * A = AV, if and only if A is not invertible. The isometry V can be chosen to be isomorphic to N is an element of N boolean OR{ +infinity} copies of the unilateral shift if A has spectral multiplicity at most N. We further show that the set of all isometrics, V, so that A is Hankel with respect to V, are in bijection with the set of all closed, symmetric restrictions of A(-1).
引用
收藏
页码:114 / 126
页数:13
相关论文
共 50 条