Soil microbial community assembly and stability are associated with potato (Solanum tuberosum L.) fitness under continuous cropping regime

被引:29
作者
Gu, Songsong [1 ,2 ]
Xiong, Xingyao [1 ,3 ]
Tan, Lin [1 ]
Deng, Ye [2 ]
Du, Xiongfeng [2 ]
Yang, Xingxing [4 ]
Hu, Qiulong [1 ]
机构
[1] Hunan Agr Univ, Changsha, Peoples R China
[2] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Key Lab Environm Biotechnol, Beijing, Peoples R China
[3] Chinese Acad Agr Sci, Agr Genom Inst Shenzhen, Shenzhen, Peoples R China
[4] Hunan Ctr Crop Germplasm Resources & Breeding Crop, Changsha, Peoples R China
关键词
continuous cropping obstacles; community assembly; network stability and complexity; potato cultivar; bacteria and fungi; NETWORK ANALYSIS; SPECIES COOCCURRENCE; ECOLOGICAL NETWORKS; FUNGAL COMMUNITIES; BACTERIAL; DIVERSITY; PATTERNS; RHIZOSPHERE; COMPLEXITY; SYSTEMS;
D O I
10.3389/fpls.2022.1000045
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Continuous cropping obstacles caused by the over-cultivation of a single crop trigger soil degradation, yield reduction and the occurrence of plant disease. However, the relationships among stability, complexity and the assembly process of soil microbial community with continuous cropping obstacles remains unclear. In this study, molecular ecological networks analysis (MENs) and inter-domain ecological networks analysis (IDENs), and a new index named cohesion tools were used to calculate the stability and complexity of soil microbial communities from eight potato cultivars grown under a continuous cropping regime by using the high-throughput sequencing data. The results showed that the stability (i.e., robustness index) of the bacterial and fungal communities for cultivar ZS5 was significantly higher, and that the complexity (i.e., cohesion values) was also significantly higher in the bacterial, fungal and inter-domain communities (i.e., bacterial-fungal community) of cultivar ZS5 than other cultivars. Network analysis also revealed that Actinobacteria and Ascomycota were the dominant phyla within intra-domain networks of continuous cropping potato soil communities, while the phyla Proteobacteria and Ascomycota dominated the correlation of the bacterial-fungal network. Infer community assembly mechanism by phylogenetic-bin-based null model analysis (iCAMP) tools were used to calculate the soil bacterial and fungal communities' assembly processes of the eight potato cultivars under continuous cropping regime, and the results showed that the bacterial community was mainly dominated by deterministic processes (64.19% - 81.31%) while the fungal community was mainly dominated by stochastic processes (78.28% - 98.99%), indicating that the continuous-cropping regime mainly influenced the potato soil bacterial community assembly process. Moreover, cultivar ZS5 possessed a relatively lower homogeneous selection, and a higher TP, TN, AP and yield than other cultivars. Our results indicated that the soil microbial network stability and complexity, and community assemble might be associated with yield and soil properties, which would be helpful in the study for resistance to potato continuous cropping obstacles.
引用
收藏
页数:15
相关论文
共 84 条
[1]   Error and attack tolerance of complex networks [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 2000, 406 (6794) :378-382
[2]   Soil quality indicators under continuous cropping systems in the Argentinean Pampas [J].
Aparicio, Virginia ;
Costa, Jose Luis .
SOIL & TILLAGE RESEARCH, 2007, 96 (1-2) :155-165
[3]   Towards revealing the global diversity and community assembly of soil eukaryotes [J].
Aslani, Farzad ;
Geisen, Stefan ;
Ning, Daliang ;
Tedersoo, Leho ;
Bahram, Mohammad .
ECOLOGY LETTERS, 2022, 25 (01) :65-76
[4]   Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots [J].
Banerjee, Samiran ;
Walder, Florian ;
Buechi, Lucie ;
Meyer, Marcel ;
Held, Alain Y. ;
Gattinger, Andreas ;
Keller, Thomas ;
Charles, Raphael ;
van der Heijden, Marcel G. A. .
ISME JOURNAL, 2019, 13 (07) :1722-1736
[5]   Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil [J].
Banerjee, Samiran ;
Kirkby, Clive A. ;
Schmutter, Dione ;
Bissett, Andrew ;
Kirkegaard, John A. ;
Richardson, Alan E. .
SOIL BIOLOGY & BIOCHEMISTRY, 2016, 97 :188-198
[6]   Scale-Free Networks: A Decade and Beyond [J].
Barabasi, Albert-Laszlo .
SCIENCE, 2009, 325 (5939) :412-413
[7]   Using network analysis to explore co-occurrence patterns in soil microbial communities [J].
Barberan, Albert ;
Bates, Scott T. ;
Casamayor, Emilio O. ;
Fierer, Noah .
ISME JOURNAL, 2012, 6 (02) :343-351
[8]   Deciphering microbial interactions and detecting keystone species with co-occurrence networks [J].
Berry, David ;
Widder, Stefanie .
FRONTIERS IN MICROBIOLOGY, 2014, 5
[9]   Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate [J].
Bokulich, Nicholas A. ;
Thorngate, John H. ;
Richardson, Paul M. ;
Mills, David A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (01) :E139-E148
[10]   Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota [J].
Bulgarelli, Davide ;
Rott, Matthias ;
Schlaeppi, Klaus ;
van Themaat, Emiel Ver Loren ;
Ahmadinejad, Nahal ;
Assenza, Federica ;
Rauf, Philipp ;
Huettel, Bruno ;
Reinhardt, Richard ;
Schmelzer, Elmon ;
Peplies, Joerg ;
Gloeckner, Frank Oliver ;
Amann, Rudolf ;
Eickhorst, Thilo ;
Schulze-Lefert, Paul .
NATURE, 2012, 488 (7409) :91-95