Two-Way Automata Characterizations of L/poly Versus NL

被引:13
作者
Kapoutsis, Christos A. [1 ]
Pighizzini, Giovanni [2 ]
机构
[1] Carnegie Mellon Univ Qatar Educ City, Doha, Qatar
[2] Univ Milan, DI, I-20135 Milan, Italy
关键词
Two-way finite automata; Logarithmic space; Structural complexity; Descriptional complexity; FINITE AUTOMATA; UNARY AUTOMATA;
D O I
10.1007/s00224-014-9560-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let L/poly and NL be the standard complexity classes, of languages recognizable in logarithmic space by Turing machines which are deterministic with polynomially-long advice and nondeterministic without advice, respectively. We recast the question whether L/poly not superset of NL in terms of deterministic and nondeterministic two-way finite automata (2DFAS and 2NFAS). We prove it equivalent to the question whether every s-state unary 2NFA has an equivalent poly(s)-state 2DFA, or whether a poly(h)-state 2DFA can check accessibility in h-vertex graphs (even under unary encoding) or check two-way liveness in h-tall, h-column graphs. This complements two recent improvements of an old theorem of Berman and Lingas. On the way, we introduce new types of reductions between regular languages (even unary ones), use them to prove the completeness of specific languages for two-way nondeterministic polynomial size, and propose a purely combinatorial conjecturethat implies L/poly not superset of NL.
引用
收藏
页码:662 / 685
页数:24
相关论文
共 11 条
  • [1] Berman P., 1977, Report 304
  • [2] Converting two-way nondeterministic unary automata into simpler automata
    Geffert, V
    Mereghetti, C
    Pighizzini, G
    [J]. THEORETICAL COMPUTER SCIENCE, 2003, 295 (1-3) : 189 - 203
  • [3] Complementing two-way finite automata
    Geffert, Viliam
    Mereghetti, Carlo
    Pighizzini, Giovanni
    [J]. INFORMATION AND COMPUTATION, 2007, 205 (08) : 1173 - 1187
  • [4] Two-way automata making choices only at the endmarkers
    Geffert, Viliam
    Guillon, Bruno
    Pighizzini, Giovanni
    [J]. INFORMATION AND COMPUTATION, 2014, 239 : 71 - 86
  • [5] Two-way unary automata versus logarithmic space
    Geffert, Viliam
    Pighizzini, Giovanni
    [J]. INFORMATION AND COMPUTATION, 2011, 209 (07) : 1016 - 1025
  • [6] Hardy G. H., 2008, An Introduction to the Theory of Numbers, V6
  • [7] Two-Way Automata Versus Logarithmic Space
    Kapoutsis, Christos A.
    [J]. THEORY OF COMPUTING SYSTEMS, 2014, 55 (02) : 421 - 447
  • [8] Kapoutsis CA, 2009, LECT NOTES COMPUT SC, V5583, P47
  • [9] Kunc M., 2011, P DLT, P324
  • [10] Sakoda William J., 1978, P 10 ANN ACM S THEOR, P275, DOI DOI 10.1145/800133.804357