Magnetic Force Microscopy on Nanofibers-Limits and Possible Approaches for Randomly Oriented Nanofiber Mats

被引:2
作者
Ehrmann, Andrea [1 ]
Blachowicz, Tomasz [2 ]
机构
[1] Bielefeld Univ Appl Sci, Fac Engn & Math, Interakt 1, D-33619 Bielefeld, Germany
[2] Silesian Tech Univ, Ctr Sci & Educ, Inst Phys, Ul Konarskiego 22B, PL-44100 Gliwice, Poland
关键词
MFM; AFM; atomic force microscopy; electrospinning; nano-composite; DOMAIN-STRUCTURE; SPIN-ICE; NANOWIRES; REVERSAL; MFM; ANISOTROPY; PATTERNS; ARRAYS; MECHANISMS; PROBE;
D O I
10.3390/magnetochemistry7110143
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Magnetic force microscopy (MFM) belongs to the methods that enable spatially resolved magnetization measurements on common thin-film samples or magnetic nanostructures. The lateral resolution can be much higher than in Kerr microscopy, another spatially resolved magnetization imaging technique, but since MFM commonly necessitates positioning a cantilever tip typically within a few nanometers from the surface, it is often more complicated than other techniques. Here, we investigate the progresses in MFM on magnetic nanofibers that can be found in the literature during the last years. While MFM measurements on magnetic nanodots or thin-film samples can often be found in the scientific literature, reports on magnetic force microscopy on single nanofibers or chaotic nanofiber mats are scarce. The aim of this review is to show which MFM investigations can be conducted on magnetic nanofibers, where the recent borders are, and which ideas can be transferred from MFM on other rough surfaces towards nanofiber mats.
引用
收藏
页数:15
相关论文
共 95 条
[1]  
Abelmann L, 2017, ENCYCLOPEDIA OF SPECTROSCOPY AND SPECTROMETRY, 3RD EDITION, VOL 2: G-M, P675, DOI 10.1016/B978-0-12-803224-4.00029-7
[2]   SmCo-based MFM probes with high switching fields [J].
Akdogan, O. ;
Akdogan, N. G. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2021, 520 (520)
[3]   The effect of tip type and scan height on magnetic domain images obtained by MFM [J].
AlKhafaji, MA ;
Rainforth, WM ;
Gibbs, MRJ ;
Bishop, JEL ;
Davies, HA .
IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (05) :4138-4140
[4]   Domain Structure and Reversal Mechanisms through DiffractedMagneto-optics in Fe80B20 Microsquare Arrays [J].
Alvarez-Sanchez, Ruben ;
Miguel Garcia-Martin, Jose ;
Briones, Fernando ;
Luis Costa-Kramer, Jose .
MAGNETOCHEMISTRY, 2020, 6 (04) :1-8
[5]   Controlling multidomain states to enable sub-10-nm magnetic force microscopy [J].
Amos, Nissim ;
Ikkawi, Rabee ;
Haddon, Robert ;
Litvinov, Dmitri ;
Khizroev, Sakhrat .
APPLIED PHYSICS LETTERS, 2008, 93 (20)
[6]   Magnetic Force Microscopy in Liquids [J].
Ares, Pablo ;
Jaafar, Miriam ;
Gil, Adriana ;
Gomez-Herrero, Julio ;
Asenjo, Agustina .
SMALL, 2015, 11 (36) :4731-4736
[7]   Synthesis and characterization of magnetic diphase ZnFe2O4/γ-Fe2O3 electrospun fibers [J].
Arias, M. ;
Pantojas, V. M. ;
Perales, O. ;
Otano, W. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2011, 323 (16) :2109-2114
[8]   Quantitative magnetic force microscopy analysis of the magnetization process in nanowire arrays [J].
Asenjo, A. ;
Jaafar, M. ;
Navas, D. ;
Vazquez, M. .
JOURNAL OF APPLIED PHYSICS, 2006, 100 (02)
[9]   Use of Two-Photon Lithography with a Negative Resist and Processing to Realise Cylindrical Magnetic Nanowires [J].
Askey, Joseph ;
Hunt, Matthew Oliver ;
Langbein, Wolfgang ;
Ladak, Sam .
NANOMATERIALS, 2020, 10 (03)
[10]   Magnetic Fe doped ZnO nanofibers obtained by electrospinning [J].
Baranowska-Korczyc, Anna ;
Reszka, Anna ;
Sobczak, Kamil ;
Sikora, Bozena ;
Dziawa, Piotr ;
Aleszkiewicz, Marta ;
Klopotowski, Lukasz ;
Paszkowicz, Wojciech ;
Dluzewski, Piotr ;
Kowalski, Bogdan J. ;
Kowalewski, Tomasz A. ;
Sawicki, Maciej ;
Elbaum, Danek ;
Fronc, Krzysztof .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2012, 61 (03) :494-500