Extracellular Vesicle-Mediated Mitochondrial Reprogramming in Cancer

被引:15
作者
Carles-Fontana, Roger [1 ,2 ,3 ]
Heaton, Nigel [2 ,3 ]
Palma, Elena [1 ,2 ]
Khorsandi, Shirin [1 ,2 ,3 ]
机构
[1] Fdn Liver Res, Roger Williams Inst Hepatol, London SE5 9NT, England
[2] Kings Coll London, Fac Life Sci & Med, London WC2R 2LS, England
[3] NHS Fdn, Kings Coll Hosp, Inst Liver Studies, London SE5 9RS, England
关键词
tumor-derived EVs (TEVs); miRNA; mitochondrial dynamics; metabolism; tumor microenvironment (TME); STROMAL CELLS; PANCREATIC-CANCER; IN-VITRO; ANTITUMOR-ACTIVITY; TUMOR PROGRESSION; ESCRT MACHINERY; IMMUNE CELLS; LUNG-CANCER; STEM-CELLS; T-CELL;
D O I
10.3390/cancers14081865
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Mitochondria are important organelles involved in several key cellular processes including energy production and cell death regulation. For this reason, it is unsurprising that mitochondrial function and structure are altered in several pathological states including cancer. Cancer cells present variate strategies to generate sufficient energy to sustain their high proliferation rates. These adaptative strategies can be mediated by extracellular signals such as extracellular vesicles. These vesicles can alter recipient cellular behavior by delivering their molecular cargo. This review explores the different EV-mediated mitochondrial reprogramming mechanisms supporting cancer survival and progression. Altered metabolism is a defining hallmark of cancer. Metabolic adaptations are often linked to a reprogramming of the mitochondria due to the importance of these organelles in energy production and biosynthesis. Cancer cells present heterogeneous metabolic phenotypes that can be modulated by signals originating from the tumor microenvironment. Extracellular vesicles (EVs) are recognized as key players in intercellular communications and mediate many of the hallmarks of cancer via the delivery of their diverse biological cargo molecules. Firstly, this review introduces the most characteristic changes that the EV-biogenesis machinery and mitochondria undergo in the context of cancer. Then, it focuses on the EV-driven processes which alter mitochondrial structure, composition, and function to provide a survival advantage to cancer cells in the context of the hallmarks of cancers, such as altered metabolic strategies, migration and invasiveness, immune surveillance escape, and evasion of apoptosis. Finally, it explores the as yet untapped potential of targeting mitochondria using EVs as delivery vectors as a promising cancer therapeutic strategy.
引用
收藏
页数:29
相关论文
共 233 条
[31]   Shaping the mitochondrial inner membrane in health and disease [J].
Colina-Tenorio, L. ;
Horten, P. ;
Pfanner, N. ;
Rampelt, H. .
JOURNAL OF INTERNAL MEDICINE, 2020, 287 (06) :645-664
[32]   Extracellular Vesicles Derived from Induced Pluripotent Stem Cells Promote Renoprotection in Acute Kidney Injury Model [J].
Collino, Federica ;
Lopes, Jarlene A. ;
Tapparo, Marta ;
Tortelote, Giovane G. ;
Kasai-Brunswick, Tais H. ;
Lopes, Gustavo M. C. ;
Almeida, Douglas B. ;
Skovronova, Renata ;
Wendt, Camila H. C. ;
de Miranda, Kildare R. ;
Bussolati, Benedetta ;
Vieyra, Adalberto ;
Lindoso, Rafael Soares .
CELLS, 2020, 9 (02)
[33]   Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles [J].
Colombo, Marina ;
Raposo, Graca ;
Thery, Clotilde .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 30, 2014, 30 :255-289
[34]   IRX-2, a novel immunotherapeutic, protects human T cells from tumor-induced cell death [J].
Czystowska, M. ;
Han, J. ;
Szczepanski, M. J. ;
Szajnik, M. ;
Quadrini, K. ;
Brandwein, H. ;
Hadden, J. W. ;
Signorelli, K. ;
Whiteside, T. L. .
CELL DEATH AND DIFFERENTIATION, 2009, 16 (05) :708-718
[35]   Aberrant Lipid Metabolism Promotes Prostate Cancer: Role in Cell Survival under Hypoxia and Extracellular Vesicles Biogenesis [J].
Deep, Gagan ;
Schlaepfer, Isabel R. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (07)
[36]   Exosome-transmitted LINC00461 promotes multiple myeloma cell proliferation and suppresses apoptosis by modulating microRNA/BCL-2 expression [J].
Deng, Mingyang ;
Yuan, Huan ;
Liu, Sufang ;
Hu, Zhiping ;
Xiao, Han .
CYTOTHERAPY, 2019, 21 (01) :96-106
[37]   The effect of simultaneous administration of arsenic trioxide and microvesicles derived from human bone marrow mesenchymal stem cells on cell proliferation and apoptosis of acute myeloid leukemia cell line [J].
Dibavar, Mahnoosh Abbaszade ;
Soleimani, Masoud ;
Atashi, Amir ;
Rassaei, Neda ;
Amiri, Shahin .
ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2018, 46 :S138-S146
[38]   Downregulation of cyclooxygenase-1 stimulates mitochondrial apoptosis through the NF-κηB signaling pathway in colorectal cancer cells [J].
Ding, Lei ;
Gu, Huan ;
Lan, Zhenwei ;
Lei, Qingchun ;
Wang, Wenxue ;
Ruan, Jiangfei ;
Yu, Min ;
Lin, Jie ;
Cui, Qinghua .
ONCOLOGY REPORTS, 2019, 41 (01) :559-569
[39]   RETRACTED: Exosome-mediated transfer of lncRNA-SNHG14 promotes trastuzumab chemoresistance in breast cancer (Retracted article. See vol. 61, 2022) [J].
Dong, Huaying ;
Wang, Wei ;
Chen, Ru ;
Zhang, Yu ;
Zou, Kejian ;
Ye, Mulin ;
He, Xionghui ;
Zhang, Fan ;
Han, Jing .
INTERNATIONAL JOURNAL OF ONCOLOGY, 2018, 53 (03) :1013-1026
[40]   Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondria! DNA-deficient cancer cells [J].
Dong, Lan-Feng ;
Kovarova, Jaromira ;
Bajzikova, Martina ;
Bezawork-Geleta, Ayenachew ;
Svec, David ;
Endaya, Berwini ;
Sachaphibulkij, Karishma ;
Coelho, Ana R. ;
Sebkova, Natasa ;
Ruzickova, Anna ;
Tan, An S. ;
Kluckova, Katarina ;
Judasova, Kristyna ;
Zamecnikova, Katerina ;
Rychtarcikova, Zuzana ;
Gopalan, Vinod ;
Andera, Ladislav ;
Sobol, Margarita ;
Yan, Bing ;
Pattnaik, Bijay ;
Bhatraju, Naveen ;
Truksa, Jaroslav ;
Stopka, Pavel ;
Hozak, Pavel ;
Lam, Alfred K. ;
Sedlacek, Radislav ;
Oliveira, Paulo J. ;
Kubista, Mikael ;
Agrawal, Anurag ;
Dvorakova-Hortova, Katerina ;
Rohlena, Jakub ;
Berridge, Michael V. ;
Neuzil, Jiri .
ELIFE, 2017, 6