Initial description of multi-modal dynamic models

被引:0
|
作者
Kárny, M [1 ]
Nedoma, P [1 ]
Nagy, I [1 ]
Valecková, M [1 ]
机构
[1] AV CR, UTIA, Prague 8, Czech Republic
来源
ARTIFICIAL NEURAL NETS AND GENETIC ALGORITHMS | 2001年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiple models, neural networks, cluster analysis and probabilistic mixtures are prominent examples of situations when complex multi-modal models [1] are built using vast amount of data. Complexity and non-unicity of modelled situation imply that resulting description depends heavily on the initial phase of search. The safest repetitive purely random search is mostly inhibited by computational complexity of the addressed task. For this reasons, various techniques have been designed. None of them, to our best knowledge, suits to cases when dynamic models are constructed. The paper describes a novel technique that fills this gap in a promising way. Essentially, the trial description is gradually split whenever there is possibility that a unimodal sub-model hides more modes.
引用
收藏
页码:398 / 401
页数:4
相关论文
共 50 条
  • [11] Towards Flexible Multi-modal Document Models
    Inoue, Naoto
    Kikuchi, Kotaro
    Simo-Serra, Edgar
    Otani, Mayu
    Yamaguchi, Kota
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 14287 - 14296
  • [12] Cross-modal generative models for multi-modal plastic sorting
    Neo, Edward R. K.
    Low, Jonathan S. C.
    Goodship, Vannessa
    Coles, Stuart R.
    Debattista, Kurt
    JOURNAL OF CLEANER PRODUCTION, 2023, 415
  • [13] Accessing learning objects within the multi-modal description framework
    Chen, JS
    Heinrich, E
    Kemp, E
    INTERNATIONAL CONFERENCE ON COMPUTERS IN EDUCATION, VOLS I AND II, PROCEEDINGS, 2002, : 117 - 118
  • [14] Cross-modal dynamic convolution for multi-modal emotion recognition
    Wen, Huanglu
    You, Shaodi
    Fu, Ying
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 78
  • [15] A multi-modal, asymmetric, weighted, and signed description of anatomical connectivity
    Tanner, Jacob
    Faskowitz, Joshua
    Teixeira, Andreia Sofia
    Seguin, Caio
    Coletta, Ludovico
    Gozzi, Alessandro
    Misic, Bratislav
    Betzel, Richard F.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [16] MMC: Multi-modal colorization of images using textual description
    Ghosh, Subhankar
    Bhattacharya, Saumik
    Roy, Prasun
    Pal, Umapada
    Blumenstein, Michael
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [17] Multi-modal control using adaptive motion description languages
    Mehta, Tejas R.
    Egerstedt, Magnus
    AUTOMATICA, 2008, 44 (07) : 1912 - 1917
  • [18] Multi-modal anchor adaptation learning for multi-modal summarization
    Chen, Zhongfeng
    Lu, Zhenyu
    Rong, Huan
    Zhao, Chuanjun
    Xu, Fan
    NEUROCOMPUTING, 2024, 570
  • [19] Dynamic Multi-modal Prompting for Efficient Visual Grounding
    Wu, Wansen
    Liu, Ting
    Wang, Youkai
    Xu, Kai
    Yin, Quanjun
    Hu, Yue
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VII, 2024, 14431 : 359 - 371
  • [20] Multi-modal Authentication Using Continuous Dynamic Programming
    Radhika, K. R.
    Sheela, S. V.
    Venkatesha, M. K.
    Sekhar, G. N.
    BIOMETRIC ID MANAGEMENT AND MULTIMODAL COMMUNICATION, PROCEEDINGS, 2009, 5707 : 228 - +