Forecasting Nitrous Oxide emissions based on grey system models

被引:27
作者
Sun, Huaping [1 ]
Jiang, Jingjing [2 ]
Mohsin, Muhammad [1 ,3 ]
Zhang, Jijian [1 ]
Solangi, Yasir Ahmed [4 ]
机构
[1] Jiangsu Univ, Sch Finance & Econ, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Harbin Inst Technol Shenzhen, Sch Econ & Management, Shenzhen 518055, Peoples R China
[3] Shaheed Benazir Bhutto Univ, Dept Business Adm, Shaheed Benazirabad, Pakistan
[4] Nanjing Univ Aeronaut & Astronaut, Coll Econ & Management, Nanjing 211106, Peoples R China
基金
中国国家自然科学基金;
关键词
Even Grey Model; Discrete Grey Model; Non-homogeneous Grey Model; Nitrous Oxide forecasting; Nitrous Oxide policy; GREENHOUSE-GAS EMISSIONS; CARBON-DIOXIDE EMISSIONS; LIFE-CYCLE; NEURAL-NETWORK; CO2; EMISSIONS; GHG EMISSIONS; GM 1,1; CHINA; ALGORITHM; SUSTAINABILITY;
D O I
10.1007/s10653-019-00398-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate forecasting is required to measure future national energy performance levels in order to establish clear policies for both monitoring and reducing Nitrous Oxide and other harmful emissions. Using the well-established and accepted measures, we predict the Nitrous Oxide emissions for the year 2030 based on actual data from the years 2000 to 2016 for six countries responsible for 61% of global emissions (China, Indonesia, India, Japan, Russia and the USA). Three advanced mathematical grey predictions models were employed, namely the Even Grey Model (1, 1), the Discrete Grey Model (1, 1) and the Non-homogeneous Discrete Grey Model, which is capable of working with poor or limited data. Results showed that the Non-homogeneous Discrete Grey Model was a better fit and proved more effective in forecasting Nitrous Oxide emissions because it produced the lowest mean absolute percentage error for all countries when compared to the Even Grey Model (1, 1) and the Discrete Grey Model (1, 1). The mean absolute percentage error of the Even Grey Model (1, 1) was 2.4%, that of the Discrete Grey Model (1, 1) was 2.16%, and that of the Non-homogeneous Discrete Grey Model was 1.9%. Furthermore, the results show that China has the highest Nitrous Oxide emissions during the years studied (China 20,578,144, Russia 1,705,110, India 7,806,137, Indonesia 3,405,389, USA 8,891,219 and Japan 780,118). This study also suggests some implications for both academicians and practitioners in respect of reducing Nitrous Oxide emission levels.
引用
收藏
页码:915 / 931
页数:17
相关论文
共 65 条
[31]   Critical review of the energy-water-carbon nexus in cities [J].
Meng, Fanxin ;
Liu, Gengyuan ;
Liang, Sai ;
Su, Meirong ;
Yang, Zhifeng .
ENERGY, 2019, 171 :1017-1032
[32]  
Ministry of Energy and Mineral Resources Republic of Indonesia, 2017, HDB EN EC STAT IND, DOI [10.1017/CBO9781107415324.004, DOI 10.1017/CBO9781107415324.004]
[33]   Long-term forecasting of nitrogen dioxide ambient levels in metropolitan areas using the discrete-time Markov model [J].
Nebenzal, Asaf ;
Fishbain, Barak .
ENVIRONMENTAL MODELLING & SOFTWARE, 2018, 107 :175-185
[34]  
Noorpoor A, 2014, J ENV STUDIES, V40, P723
[35]   Grey-based model for forecasting Mauritius international tourism from different regions [J].
Pirthee, Medha .
GREY SYSTEMS-THEORY AND APPLICATION, 2017, 7 (02) :259-271
[36]   Carbon prices and greenhouse gases abatement from agriculture, forestry and land use in Nepal [J].
Pradhan, Bijay B. ;
Shrestha, Ram M. ;
Hoa, Nguyen T. ;
Matsuoka, Yuzuru .
GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2017, 43 :26-36
[37]  
Rashotte Nicole, 2018, Coal Investing News
[38]   Life cycle of meats: An opportunity to abate the greenhouse gas emission from meat industry in Japan [J].
Roy, Poritosh ;
Orikasa, Takahiro ;
Thammawong, Manasikan ;
Nakamura, Nobutaka ;
Xu, Qingyi ;
Shiina, Takeo .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2012, 93 (01) :218-224
[39]  
Rutland Peter., 2018, The International Political Economy of Oil and Gas, DOI [DOI 10.1007/978-3-319-62557-7_3, 10.1007/978-3-319-62557-7_3]
[40]   A GHG emissions analysis method for product remanufacturing: A case study on a diesel engine [J].
Shi, Junli ;
Fan, Shuangjiao ;
Wang, Yajun ;
Cheng, Jinshi .
JOURNAL OF CLEANER PRODUCTION, 2019, 206 (955-965) :955-965