Improving Stirling's formula

被引:0
作者
Batir, Necdet [1 ]
机构
[1] Nevsehir Univ, Fac Arts & Sci, Dept Math, Nevsehir, Turkey
关键词
Stirling formula; Burnside's formula; gamma function; digamma function; inequalities; GAMMA-FUNCTIONS; APPROXIMATIONS; INEQUALITIES; SERIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We calculated the optimal values of the real parameters a and b in such a way that the asymptotic formula n ! similar to e(-a) (n+a/e)(n) root 2 pi(n+b) (as n -> infinity) gives the best accurate values for n !. Our estimations improve the classical Stirling and Burnside's formulas and their several recent improvements due to the author and C. Mortici. Apart from their simplicities and beauties our formulas give very accurate values for factorial n. Also, our results lead to new upper and lower bounds for the gamma function and recover some published inequalities for the gamma function.
引用
收藏
页码:105 / 114
页数:10
相关论文
共 18 条
[1]  
Abramowitz M., 1972, Handbook on Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[2]  
Alzer H, 2008, MEDITERR J MATH, V5, P395, DOI 10.1007/s00009-008-0158-x
[3]   On the series Σ∞k=1(3kk)-1k-n xk [J].
Batir, N .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2005, 115 (04) :371-381
[4]   Integral representations of some series involving (2k⊥k)-1 k-n and some related series [J].
Batir, N .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (03) :645-667
[5]  
Batir N., 2005, J INEQUAL PURE APPL, V6, P1
[6]   Inequalities for the gamma function [J].
Batir, Necdet .
ARCHIV DER MATHEMATIK, 2008, 91 (06) :554-563
[7]  
BERG C, P AM MATH S IN PRESS
[8]  
Burnside W., 1917, Messenger Math, V46, P157
[9]   Complete monotonicity and logarithmically complete monotonicity properties for the gamma and psi functions [J].
Chen, Chao-Ping .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) :812-822
[10]   On some properties of the gamma function [J].
Elbert, A ;
Laforgia, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (09) :2667-2673