Geometrical resonance in a driven symmetric bistable system subjected to strong or to weak damping

被引:13
作者
Chacon, R
机构
[1] Departamento de Electrónica e Ingeniería Electromecánica, Escuela de Ingenierías Industriales, Universidad de Extremadura, Badajoz, 382071 06, Apartado
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 06期
关键词
D O I
10.1103/PhysRevE.54.6153
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The response of a symmetric bistable system driven by a time-periodic rectangular force modeled by the Jacobian elliptic function sn is studied in two limiting situations: overdamping and weak damping. For the overdamping case, the appearance of responses with the same shape and period as the driving force is explained in terms of a geometrical resonance phenomenon. The distortion of the response under changes in the forcing period and shape is also considered. For weak damping, the reduction of homoclinic chaos as the driving shape approximates the geometrical resonance forcing shape is explained by means of Melnikov's analysis in the asymptotic case of infinite period driving.
引用
收藏
页码:6153 / 6159
页数:7
相关论文
共 19 条
[1]  
[Anonymous], 1979, NONLINEAR OSCIL
[2]  
[Anonymous], 1991, J FLUID MECH
[3]  
BYRD PD, 1971, HDB ELLIPTIC INTEGRA, P191
[4]   ROUTES TO SUPPRESSING CHAOS BY WEAK PERIODIC PERTURBATIONS [J].
CHACON, R ;
BEJARANO, JD .
PHYSICAL REVIEW LETTERS, 1993, 71 (19) :3103-3106
[5]   Geometrical resonance as a chaos eliminating mechanism [J].
Chacon, R .
PHYSICAL REVIEW LETTERS, 1996, 77 (03) :482-485
[6]  
Drazin P.G., 1989, SOLITONS INTRO
[7]  
FAVARO A, 1909, OPERE G GALILEI
[8]  
GUCKENHEIMER J, 1983, NONLINEAR OSCILLATIO, P171
[9]  
Haken H., 1983, SYNERGETICS, V3rd
[10]  
KAPITANIAK T, 1992, CHAOTIC OSCILLATIONS