Lifespan of solutions to semilinear damping wave equations in de Sitter spacetime

被引:2
作者
Li, Hengyan [1 ]
Li, Xintao [2 ]
Yan, Weiping [2 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Math & Informat Sci, Zhengzhou 450011, Peoples R China
[2] Xiamen Univ, Coll Math, Xiamen 361000, Peoples R China
关键词
Blowup; Wave equation; Lifespan; TIME BLOW-UP; KLEIN-GORDON EQUATION; GLOBAL EXISTENCE; GLASSEY CONJECTURE; CAUCHY-PROBLEM; BEHAVIOR;
D O I
10.1016/j.na.2019.111735
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies blowup phenomena for two kind of initial value problem of semilinear damping wave equations in de Sitter spacetime. The first problem comes from the latter problem of conjecture of Strauss in de Sitter Spacetime, and the second problem arises from the latter problem of conjecture of Glassey in de Sitter Spacetime. We give blowup and lifespan of solutions on those two problems. Comparing with non-damping case established in Yan (2018), one can see that the damping term with a positive bounded time-dependent coefficient does not effect blowup of solutions. Meanwhile, we establish a new ODE blowup result concerning damping term. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 49 条
[1]  
[Anonymous], 1973, CAMBRIDGE MONOGRAPHS
[2]   Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEARITY, 2019, 32 (07) :2481-2495
[3]   A parametrix for the fundamental solution of the Klein-Gordon equation on asymptotically de Sitter spaces [J].
Baskin, Dean .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (07) :1673-1719
[4]   Double phase problems with variable growth [J].
Cencelj, Matija ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 :270-287
[5]  
Choquet-Bruhat Y, 2000, LECT NOTES PHYS, V536, P1
[6]   Boundary blow-up in nonlinear elliptic equations of Bieberbach-Rademacher type [J].
Cirstea, Florica-Corina ;
Radulescu, Vicentiu .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (07) :3275-3286
[7]   AN EXAMPLE OF A WEAKLY HYPERBOLIC CAUCHY-PROBLEM NOT WELL POSED IN C-INFINITY [J].
COLOMBINI, F ;
SPAGNOLO, S .
ACTA MATHEMATICA, 1982, 148 :243-253
[8]  
Colombini F., 1979, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V6, P511
[10]  
DESITTER W, 1917, ROY ASTRON SOC, V77, P155