Directed force propagation in semiflexible networks

被引:5
|
作者
Grill, Maximilian J. [1 ]
Kernes, Jonathan [2 ]
Slepukhin, Valentin M. [2 ]
Wall, Wolfgang A. [1 ]
Levine, Alex J. [2 ,3 ,4 ]
机构
[1] Tech Univ Munich, Inst Computat Mech, D-85748 Garching, Germany
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Computat Med, Los Angeles, CA 90095 USA
关键词
DISTRIBUTIONS; FLUCTUATIONS; CHAINS;
D O I
10.1039/d0sm01177k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We consider the propagation of tension along specific filaments of a semiflexible filament network in response to the application of a point force using a combination of numerical simulations and analytic theory. We find the distribution of force within the network is highly heterogeneous, with a small number of fibers supporting a significant fraction of the applied load over distances of multiple mesh sizes surrounding the point of force application. We suggest that these structures may be thought of as tensile force chains, whose structure we explore via simulation. We develop self-consistent calculations of the point-force response function and introduce a transfer matrix approach to explore the decay of tension (into bending) energy and the branching of tensile force chains in the network.
引用
收藏
页码:10223 / 10241
页数:19
相关论文
共 39 条
  • [21] Propagation of fluctuations in biochemical systems, I: Linear SSC networks
    Anderson, David F.
    Mattingly, Jonathan C.
    Nijhout, H. Frederik
    Reed, Michael C.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (06) : 1791 - 1813
  • [22] Characterization of force networks in a dense high-shear system
    Khalilitehrani, Mohammad
    Sasic, Srdjan
    Rasmuson, Anders
    PARTICUOLOGY, 2018, 38 : 215 - 221
  • [23] Penalized homophily latent space models for directed scale-free networks
    Yang, Hanxuan
    Xiong, Wei
    Zhang, Xueliang
    Wang, Kai
    Tian, Maozai
    PLOS ONE, 2021, 16 (08):
  • [24] The mechanism of noise propagation in typical building blocks of biochemical reaction networks
    Chen Ai-Min
    Zhang Jia-Jun
    Yuan Zhan-Jiang
    Zhou Tian-Shou
    ACTA PHYSICA SINICA, 2009, 58 (04) : 2804 - 2811
  • [25] Time-Varying Spatial Propagation of Brain Networks in fMRI Data
    Bostami, Biozid
    Lewis, Noah
    Agcaoglu, Oktay
    Turner, Jessica A.
    van Erp, Theo
    Ford, Judith M.
    Fouladivanda, Mahshid
    Calhoun, Vince
    Iraji, Armin
    HUMAN BRAIN MAPPING, 2025, 46 (02)
  • [26] Propagation of negative shocks across nation-wide firm networks
    Inoue, Hiroyasu
    Todo, Yasuyuki
    PLOS ONE, 2019, 14 (03):
  • [27] The impact of polarization force on the oblique propagation of dust-acoustic solitons in a superthermal complex magnetoplasma
    Naeem, S. Neelam
    Qamar, Anisa
    Almas
    Ata-ur-Rahman
    Alhejaili, Weaam
    Ismaeel, Sherif M. E.
    El-Tantawy, S. A.
    CHAOS SOLITONS & FRACTALS, 2024, 187
  • [28] On the propagation of diel signals in river networks using analytic solutions of flow equations
    Fonley, Morgan
    Mantilla, Ricardo
    Small, Scott J.
    Curtu, Rodica
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2016, 20 (07) : 2899 - 2912
  • [29] Robust prediction of force chains in jammed solids using graph neural networks
    Mandal, Rituparno
    Casert, Corneel
    Sollich, Peter
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [30] Cooperativity in Thermal and Force-Induced Protein Unfolding: Integration of Crack Propagation and Network Elasticity Models
    Srivastava, Amit
    Granek, Rony
    PHYSICAL REVIEW LETTERS, 2013, 110 (13)