Free entropy dimension and regularity of non-commutative polynomials

被引:10
作者
Charlesworth, Ian [1 ]
Shlyakhtenko, Dimitri [1 ]
机构
[1] UCLA, Dept Math, Los Angeles, CA 90095 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Free probability; Non-atomic distributions; Free entropy; FREE PROBABILITY-THEORY; FISHER INFORMATION MEASURE; ANALOGS;
D O I
10.1016/j.jfa.2016.05.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the spectral measure of any non-constant non-commutative polynomial evaluated at a non-commutative n-tuple cannot have atoms if the free entropy dimension of that n-tuple is n (see also work of Mai, Speicher, and Weber). Under stronger assumptions on the n-tuple, we prove that the spectral measure of any non-constant non-commutative polynomial function is not singular, and measures of intervals surrounding any point may not decay slower than polynomially as a function of the interval's length. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:2274 / 2292
页数:19
相关论文
共 16 条
[1]  
Anderson, 2014, PREPRINT
[2]   A law of large numbers for finite-range dependent random matrices [J].
Anderson, Greg W. ;
Zeitouni, Ofer .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (08) :1118-1154
[3]   Large deviation bounds for matrix Brownian motion [J].
Biane, P ;
Capitaine, M ;
Guionnet, A .
INVENTIONES MATHEMATICAE, 2003, 152 (02) :433-459
[4]  
Blackadar B., 2006, Operator Algebras
[5]  
Connes A, 2005, J REINE ANGEW MATH, V586, P125
[6]   A free stochastic partial differential equation [J].
Dabrowski, Yoann .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (04) :1404-1455
[7]  
FIGALLI A, 2014, PREPRINT
[8]   Free monotone transport [J].
Guionnet, A. ;
Shlyakhtenko, D. .
INVENTIONES MATHEMATICAE, 2014, 197 (03) :613-661
[9]  
Kato T., 1966, PERTURBATION THEORY
[10]   Free biholomorphic functions and operator model theory [J].
Popescu, Gelu .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (07) :3240-3308