Multiple scales analysis of Hamiltonians with short-range potentials

被引:0
作者
Dufey, F
Lin, SH
机构
[1] Tech Univ Munich, Phys Dept T38, D-85747 Garching, Germany
[2] Acad Sinica, IAMS, Taipei 106, Taiwan
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 17期
关键词
D O I
10.1088/0305-4470/38/17/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The formal asymptotic expansion in epsilon of the eigenvalues and eigenfunctions of a family of one-dimensional Hamiltonians -d(2)/dx(2) + V(x) + l/epsilon W(x/epsilon) is considered in the limit epsilon -> 0, using the technique of multiple scales. For sufficiently localized short-range potentials W the 0(epsilon(0)) approximation can be found by the usual replacement of the function W by a delta-type distribution. A simple analytical formula is found which expresses the first-order correction in terms of the zeroth-order wavefunction and some moments of the function W.
引用
收藏
页码:3857 / 3867
页数:11
相关论文
共 18 条
[1]  
ALBEVERIO S, 1984, J OPERAT THEOR, V12, P101
[2]  
Albeverio S, 1988, TEXTS MONOGRAPHS PHY, DOI DOI 10.1007/978-3-642-88201-2
[3]  
Bender C.M., 1978, Advanced mathematical methods for scientists and engineers
[4]   Multiple-scale analysis of quantum systems [J].
Bender, CM ;
Bettencourt, LMA .
PHYSICAL REVIEW D, 1996, 54 (12) :7710-7723
[5]   Realizing discontinuous wave functions with renormalized short-range potentials [J].
Cheon, T ;
Shigehara, T .
PHYSICS LETTERS A, 1998, 243 (03) :111-116
[6]  
Colombeau J.F., 1992, LECT NOTES MATH, V1532
[7]  
Colombeau J. F, 1984, N HOLLAND MATH STUDI, V84
[8]  
Estrada R., 2002, DISTRIBUTIONAL APPRO
[9]   Potential approximations to δ′:: An inverse Klauder phenomenon with norm-resolvent convergence [J].
Exner, P ;
Neidhardt, H ;
Zagrebnov, VA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 224 (03) :593-612
[10]  
GROSSER M, 2001, GEOMETRIC THEORY GEN