Comparison of Machine and Deep Learning models for automatic segmentation of prostate cancers on multiparametric MRI

被引:0
作者
Maimone, Giovanni [1 ]
Nicoletti, Giulia [2 ]
Mazzetti, Simone [1 ,3 ]
Regge, Daniele [1 ,3 ]
Giannini, Valentina [1 ,3 ]
机构
[1] Univ Turin, Dept Surg Sci, Turin, Italy
[2] Politecn Torino, Dept Elect & Telecommun, Turin, Italy
[3] FPO IRCCS, Candiolo Canc Inst, Turin, Italy
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA 2022) | 2022年
基金
欧盟地平线“2020”;
关键词
Machine Learning; Deep Learning; medical imaging; automatic segmentation; MRI imaging; GUIDELINES; DIAGNOSIS;
D O I
10.1109/MEMEA54994.2022.9856530
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Multiparametric (mp) magnetic resonance imaging (MRI) represents a robust tool for detecting prostate cancers (PCa). However, its interpretation requires skilled and specialized staff, and large investments of resources and time. To deal with this problem different artificial intelligence algorithms, based on Machine Learning (ML) and Deep Learning (DL), have been proposed and have been demonstrated useful to detect and characterize PCa. In this paper, we present a fully automated computer-aided diagnosis (CAD) system that utilizes either ML or DL techniques to segment PCa and we compared the results in terms of number of False Negative (FN) and False Positives (FPs) findings and accuracy of the segmentation masks. We present a DL model with two different input configurations: 2-channel and 3-channel. According to our results, DL techniques greatly decrease the volume of FPs and the number of FN compared to ML techniques, especially using the 3-channel model. Indeed, on the validation set, the number of FNs obtained by the DL model is lower than that by ML (respectively 7 and 11), while the median volume of FPs voxels decreased from 1077 IQR=362-3787 to 518 IQR=170-1049. The results obtained from this system could have a fairly obvious improvement by increasing the validation set, however preliminary results are encouraging and could be a strong contribution for personalized medicine.
引用
收藏
页数:5
相关论文
共 22 条
[1]   Synopsis of the PI-RADS v2 Guidelines for Multiparametric Prostate Magnetic Resonance Imaging and Recommendations for Use [J].
Barentsz, Jelle O. ;
Weinreb, Jeffrey C. ;
Verma, Sadhna ;
Thoeny, Harriet C. ;
Tempany, Clare M. ;
Shtern, Faina ;
Padhani, Anwar R. ;
Margolis, Daniel ;
Macura, Katarzyna J. ;
Haider, Masoom A. ;
Cornud, Francois ;
Choyke, Peter L. .
EUROPEAN UROLOGY, 2016, 69 (01) :41-49
[2]   Deep learning model for automatic prostate segmentation on bicentric T2w images with and without endorectal coil [J].
Barra, Davide ;
Nicoletti, Giulia ;
Defeudis, Arianna ;
Mazzetti, Simone ;
Panic, Jovana ;
Gatti, Marco ;
Faletti, Riccardo ;
Russo, Filippo ;
Regge, Daniele ;
Giannini, Valentina .
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, :3370-3373
[3]   Machine and Deep Learning Prediction Of Prostate Cancer Aggressiveness Using Multiparametric MRI [J].
Bertelli, Elena ;
Mercatelli, Laura ;
Marzi, Chiara ;
Pachetti, Eva ;
Baccini, Michela ;
Barucci, Andrea ;
Colantonio, Sara ;
Gherardini, Luca ;
Lattavo, Lorenzo ;
Pascali, Maria Antonietta ;
Agostini, Simone ;
Miele, Vittorio .
FRONTIERS IN ONCOLOGY, 2022, 11
[4]   Update of the Standard Operating Procedure on the Use of Multiparametric Magnetic Resonance Imaging for the Diagnosis, Staging and Management of Prostate Cancer [J].
Bjurlin, Marc A. ;
Carroll, Peter R. ;
Eggener, Scott ;
Fulgham, Pat F. ;
Margolis, Daniel J. ;
Pinto, Peter A. ;
Rosenkrantz, Andrew B. ;
Rubenstein, Jonathan N. ;
Rukstalis, Daniel B. ;
Taneja, Samir S. ;
Turkbey, Baris .
JOURNAL OF UROLOGY, 2020, 203 (04) :706-712
[5]   Multiparametric MRI to improve detection of prostate cancer compared with transrectal ultrasound-guided prostate biopsy alone: the PROMIS study [J].
Brown, Louise Clare ;
Ahmed, Hashim U. ;
Faria, Rita ;
Bosaily, Ahmed El-Shater ;
Gabe, Rhian ;
Kaplan, Richard S. ;
Parmar, Mahesh ;
Collaco-Moraes, Yolanda ;
Ward, Katie ;
Hindley, Richard Graham ;
Freeman, Alex ;
Kirkham, Alexander ;
Oldroyd, Robert ;
Parker, Chris ;
Bott, Simon ;
Burns-Cox, Nick ;
Dudderidge, Tim ;
Ghei, Maneesh ;
Henderson, Alastair ;
Persad, Rajendra ;
Rosario, Derek J. ;
Shergill, Iqbal ;
Winkler, Mathias ;
Soares, Marta ;
Spackman, Eldon ;
Sculpher, Mark ;
Emberton, Mark .
HEALTH TECHNOLOGY ASSESSMENT, 2018, 22 (39) :1-+
[6]   Machine learning applications in prostate cancer magnetic resonance imaging [J].
Cuocolo, Renato ;
Cipullo, Maria Brunella ;
Stanzione, Arnaldo ;
Ugga, Lorenzo ;
Romeo, Valeria ;
Radice, Leonardo ;
Brunetti, Arturo ;
Imbriaco, Massimo .
EUROPEAN RADIOLOGY EXPERIMENTAL, 2019, 3 (01)
[7]   A Fully Automatic Artificial Intelligence System Able to Detect and Characterize Prostate Cancer Using Multiparametric MRI: Multicenter and Multi-Scanner Validation [J].
Giannini, Valentina ;
Mazzetti, Simone ;
Defeudis, Arianna ;
Stranieri, Giuseppe ;
Calandri, Marco ;
Bollito, Enrico ;
Bosco, Martino ;
Porpiglia, Francesco ;
Manfredi, Matteo ;
De Pascale, Agostino ;
Veltri, Andrea ;
Russo, Filippo ;
Regge, Daniele .
FRONTIERS IN ONCOLOGY, 2021, 11
[8]   Computer-Aided Diagnosis Improves the Detection of Clinically Significant Prostate Cancer on Multiparametric-MRI: A Multi-Observer Performance Study Involving Inexperienced Readers [J].
Giannini, Valentina ;
Mazzetti, Simone ;
Cappello, Giovanni ;
Doronzio, Valeria Maria ;
Vassallo, Lorenzo ;
Russo, Filippo ;
Giacobbe, Alessandro ;
Muto, Giovanni ;
Regge, Daniele .
DIAGNOSTICS, 2021, 11 (06)
[9]   Multiparametric magnetic resonance imaging of the prostate with computer-aided detection: experienced observer performance study [J].
Giannini, Valentina ;
Mazzetti, Simone ;
Armando, Enrico ;
Carabalona, Silvia ;
Russo, Filippo ;
Giacobbe, Alessandro ;
Muto, Giovanni ;
Regge, Daniele .
EUROPEAN RADIOLOGY, 2017, 27 (10) :4200-4208
[10]   A fully automatic computer aided diagnosis system for peripheral zone prostate cancer detection using multi-parametric magnetic [J].
Giannini, Valentina ;
Mazzetti, Simone ;
Vignati, Anna ;
Russo, Filippo ;
Bollito, Enrico ;
Porpiglia, Francesco ;
Stasi, Michele ;
Regge, Daniele .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 46 :219-226