Identification of montmorillonite particle edge orientations by atomic-force microscopy

被引:22
作者
Kraevsky, Sergey, V [1 ,2 ,3 ,4 ]
Tournassat, Christophe [2 ,5 ,6 ]
Vayer, Marylene [7 ]
Warmont, Fabienne [7 ]
Grangeon, Sylvain [2 ]
Wakou, Brice F. Ngouana [1 ]
Kalinichev, Andrey G. [1 ,8 ]
机构
[1] Univ Nantes, Lab SUBATECH, UMR 6457, Inst Mines Telecom Atlantique,CNRS,IN2P3, F-44307 Nantes, France
[2] Bur Rech Geol & Minieres, 3 Ave Claude Guillemin, F-45060 Orleans, France
[3] Kurchatov Inst ITEP, Moscow 117218, Russia
[4] Fed Res & Clin Ctr Phys Chem Med, Moscow 119435, Russia
[5] Univ Orleans, UMR 7327, Inst Sci Terre Orleans, CNRS,INSU,BRGM, F-45071 Orleans, France
[6] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[7] Univ Orleans, ICMN, CNRS, 1b Rue Ferollerie, F-245071 Orleans 2, France
[8] Natl Res Univ Higher Sch Econ, Moscow, Russia
关键词
Clay nanoparticles; Montmorillonite; Edges ratio; AFM; MD simulations; MOLECULAR-DYNAMICS SIMULATION; INTERFACIAL STRUCTURES; LAYER STRUCTURE; MUSCOVITE MICA; AB-INITIO; SURFACE; PYROPHYLLITE; SORPTION; ACIDITY; ADSORPTION;
D O I
10.1016/j.clay.2020.105442
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Statistical information on the edge surface area and edge crystallographic orientation of clay nanoparticle surfaces is essential for proper accounting of the protonation-deprotonation reactions as a part of mechanistic surface complexation models. A combination of atomic-force microscopy (AFM) measurements and molecular dynamics computer simulations made it possible to quantify the relative contributions of the most frequently occurring montmorillonite edge surfaces to the total edge surface area. Edge surfaces normal to the [110] and [010] crystallographic directions are found to be the most abundant (similar to 60% and similar to 20%, respectively), in agreement with previous estimations.
引用
收藏
页数:8
相关论文
共 62 条
[1]  
ANDRA, 2005, EV FEAS GEOL REP ARG
[2]   EFFECT OF SURFACE CHARGE AND ELEMENTAL COMPOSITION ON THE SWELLING AND DELAMINATION OF MONTMORILLONITE NANOCLAYS USING SEDIMENTATION FIELD-FLOW FRACTIONATION AND MASS SPECTROSCOPY [J].
Assemi, Shoeleh ;
Sharma, Sugandha ;
Tadjiki, Soheyl ;
Prisbrey, Keith ;
Ranville, James ;
Miller, Jan D. .
CLAYS AND CLAY MINERALS, 2015, 63 (06) :457-468
[3]   Experimental constraints on illite crystal morphology [J].
Bauer, A ;
Velde, B ;
Gaupp, R .
CLAY MINERALS, 2000, 35 (03) :587-597
[4]   Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates:: Implications for acid-base reactivity [J].
Bickmore, BR ;
Rosso, KM ;
Nagy, KL ;
Cygan, RT ;
Tadanier, CJ .
CLAYS AND CLAY MINERALS, 2003, 51 (04) :359-371
[5]  
Borisovera M., 2015, Natural and engineered clay barriers, P33, DOI [10.1016/B978-0-08-100027-4.00002-4, DOI 10.1016/B978-0-08-100027-4.00002-4]
[6]   Modeling the acid-base surface chemistry of montmorillonite [J].
Bourg, Ian C. ;
Sposito, Garrison ;
Bourg, Alain C. M. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 312 (02) :297-310
[7]   MECHANISM OF ADSORPTION AND DESORPTION OF WATER-VAPOR BY HOMOIONIC MONTMORILLONITE .1. THE SODIUM-EXCHANGED FORM [J].
CASES, JM ;
BEREND, I ;
BESSON, G ;
FRANCOIS, M ;
URIOT, JP ;
THOMAS, F ;
POIRIER, JE .
LANGMUIR, 1992, 8 (11) :2730-2739
[8]   Ab initio study of sorption on pyrophyllite: Structure and acidity of the edge sites [J].
Churakov, SV .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (09) :4135-4146
[9]   Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field [J].
Cygan, RT ;
Liang, JJ ;
Kalinichev, AG .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (04) :1255-1266
[10]   STRUCTURES OF THE 2:1 LAYERS OF PYROPHYLLITE AND TALC [J].
Drits, Victor A. ;
Guggenheim, Stephen ;
Zviagina, Bella B. ;
Kogure, Toshihiro .
CLAYS AND CLAY MINERALS, 2012, 60 (06) :574-587