Teamwork: Ion channels and transporters join forces in the brain

被引:12
|
作者
Manville, Rian W. [1 ]
Abbott, Geoffrey W. [1 ]
机构
[1] Univ Calif Irvine, Sch Med, Dept Physiol & Biophys, Bioelect Lab, Irvine, CA 92717 USA
基金
美国国家卫生研究院;
关键词
DAT1; GLT1; KCNQ1; KCNQ2; KCNQ3; SMIT1; SMIT2; NIS; NA+/MYO-INOSITOL COTRANSPORTER; POTASSIUM CHANNEL; K+ CHANNEL; KCNQ; CLONING;
D O I
10.1016/j.neuropharm.2019.04.007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Voltage-gated potassium (Kv) channels open in response to changes in membrane potential to permit passage of K+ ions across the cell membrane, down their electrochemical gradient. Sodium-coupled solute transporters utilize the downhill sodium gradient to co-transport solutes, ranging from ions to sugars to neurotransmitters, into the cell. A variety of recent studies have uncovered cooperation between these two structurally and functionally unrelated classes of protein, revealing previously unnoticed functional crosstalk and in many cases physical interaction to form channel-transporter (chansporter) complexes. Adding to this field, Bartolome-Martin and colleagues now report that the heteromeric KCNQ2/KCNQ3 (Kv7.2/7.3) potassium channel the primary molecular correlate of the neuronal M-current - can physically interact with two sodium-coupled neurotransmitter transporters expressed in the brain, DAT and GLT1 (dopamine and glutamate transporters, respectively). The authors provide evidence that the interactions may enhance transporter activity while dampening the depolarizing effects of sodium influx. Cumulative evidence discussed here suggests that chansporter complexes represent a widespread form of cellular signaling hub, in the CNS and other tissues. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Ion channels and transporters in microglial function in physiology and brain diseases
    Luo, Lanxin
    Song, Shanshan
    Ezenwukwa, Chibundum C.
    Jalali, Shayan
    Sun, Baoshan
    Sun, Dandan
    NEUROCHEMISTRY INTERNATIONAL, 2021, 142
  • [2] Ubiquitination of Ion Channels and Transporters
    Lamothe, S. M.
    Zhang, S.
    UBIQUITINATION AND TRANSMEMBRANE SIGNALING, 2016, 141 : 161 - 223
  • [3] Ion selectivity in channels and transporters
    Roux, Benoit
    Berneche, Simon
    Egwolf, Bernhard
    Lev, Bogdan
    Noskov, Sergei Y.
    Rowley, Christopher N.
    Yu, Haibo
    JOURNAL OF GENERAL PHYSIOLOGY, 2011, 137 (05): : 415 - 426
  • [4] Ion Channels and Transporters in Autophagy
    Zhang, Ruoxi
    Kang, Rui
    Klionsky, Daniel J.
    Tang, Daolin
    AUTOPHAGY, 2022, 18 (01) : 4 - 23
  • [5] Ion channels and transporters in metastasis
    Stock, Christian
    Schwab, Albrecht
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2015, 1848 (10): : 2638 - 2646
  • [6] Mitochondrial Ion Channels and Transporters
    Peixoto, Pablo M.
    Pavlov, Evgeny
    Jonas, Elizabeth
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2017, 49 (01) : 1 - 2
  • [7] Ion channels and transporters in osteoclasts
    Supanchart, Chayarop
    Kornak, Uwe
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2008, 473 (02) : 161 - 165
  • [8] Ion channels and transporters on the move
    Schwab, A
    NEWS IN PHYSIOLOGICAL SCIENCES, 2001, 16 : 29 - 33
  • [9] ION CHANNELS AND TRANSMEMBRANE TRANSPORTERS
    WINE, JJ
    CURRENT BIOLOGY, 1993, 3 (02) : 118 - 120
  • [10] IRBIT: A regulator of ion channels and ion transporters
    Ando, Hideaki
    Kawaai, Katsuhiro
    Mikoshiba, Katsuhiko
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2014, 1843 (10): : 2195 - 2204