Deep learning and capsule endoscopy: automatic identification and differentiation of small bowel lesions with distinct haemorrhagic potential using a convolutional neural network

被引:33
作者
Mascarenhas Saraiva, Miguel Jose [1 ,2 ,3 ]
Afonso, Joao [1 ,2 ]
Ribeiro, Tiago [1 ,2 ]
Ferreira, Joao [4 ,5 ]
Cardoso, Helder [1 ,2 ,3 ]
Andrade, Ana Patricia [1 ,2 ,3 ]
Parente, Marco [4 ,5 ]
Natal, Renato [4 ,5 ]
Saraiva, Miguel Mascarenhas [6 ]
Macedo, Guilherme [1 ,2 ,3 ]
机构
[1] Hosp Sao Joao, Dept Gastroenterol, Porto, Portugal
[2] WGO Gastroenterol & Hepatol Training Ctr, Gastroenterol & Hepatol, Porto, Portugal
[3] Univ Porto, Fac Med, Porto, Portugal
[4] Univ Porto, Dept Mech Engn, Fac Engn, Porto, Portugal
[5] INEGI Inst Sci & Innovat Mech & Ind Engn, Porto, Portugal
[6] ManopH, Endoscopy & Digest Motil Lab, Porto, Portugal
关键词
gastrointestinal bleeding; endoscopy; inflammatory bowel disease; DOUBLE-BALLOON ENTEROSCOPY; CROHNS-DISEASE; CLASSIFICATION;
D O I
10.1136/bmjgast-2021-000753
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Objective Capsule endoscopy (CE) is pivotal for evaluation of small bowel disease. Obscure gastrointestinal bleeding most often originates from the small bowel. CE frequently identifies a wide range of lesions with different bleeding potentials in these patients. However, reading CE examinations is a time-consuming task. Convolutional neural networks (CNNs) are highly efficient artificial intelligence tools for image analysis. This study aims to develop a CNN-based model for identification and differentiation of multiple small bowel lesions with distinct haemorrhagic potential using CE images. Design We developed, trained, and validated a denary CNN based on CE images. Each frame was labelled according to the type of lesion (lymphangiectasia, xanthomas, ulcers, erosions, vascular lesions, protruding lesions, and blood). The haemorrhagic potential was assessed by Saurin's classification. The entire dataset was divided into training and validation sets. The performance of the CNN was measured by the area under the receiving operating characteristic curve, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Results A total of 53 555 CE images were included. The model had an overall accuracy of 99%, a sensitivity of 88%, a specificity of 99%, a PPV of 87%, and an NPV of 99% for detection of multiple small bowel abnormalities and respective classification of bleeding potential. Conclusion We developed and tested a CNN-based model for automatic detection of multiple types of small bowel lesions and classification of the respective bleeding potential. This system may improve the diagnostic yield of CE for these lesions and overall CE efficiency.
引用
收藏
页数:8
相关论文
共 32 条
[1]  
Afonso J., TECHNIQUES INNOVATIO
[2]   Automatic detection of various abnormalities in capsule endoscopy videos by a deep learning-based system: a multicenter study [J].
Aoki, Tomonori ;
Yamada, Atsuo ;
Kato, Yusuke ;
Saito, Hiroaki ;
Tsuboi, Akiyoshi ;
Nakada, Ayako ;
Niikura, Ryota ;
Fujishiro, Mitsuhiro ;
Oka, Shiro ;
Ishihara, Soichiro ;
Matsuda, Tomoki ;
Nakahori, Masato ;
Tanaka, Shinji ;
Koike, Kazuhiko ;
Tada, Tomohiro .
GASTROINTESTINAL ENDOSCOPY, 2021, 93 (01) :165-+
[3]   Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network [J].
Aoki, Tomonori ;
Yamada, Atsuo ;
Kato, Yusuke ;
Saito, Hiroaki ;
Tsuboi, Akiyoshi ;
Nakada, Ayako ;
Niikura, Ryota ;
Fujishiro, Mitsuhiro ;
Oka, Shiro ;
Ishihara, Soichiro ;
Matsuda, Tomoki ;
Nakahori, Masato ;
Tanaka, Shinji ;
Koike, Kazuhiko ;
Tada, Tomohiro .
JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2020, 35 (07) :1196-1200
[4]   Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network [J].
Aoki, Tomonori ;
Yamada, Atsuo ;
Aoyama, Kazuharu ;
Saito, Hiroaki ;
Tsuboi, Akiyoshi ;
Nakada, Ayako ;
Niikura, Ryota ;
Fujishiro, Mitsuhiro ;
Oka, Shiro ;
Ishihara, Soichiro ;
Matsuda, Tomoki ;
Tanaka, Shinji ;
Koike, Kazuhiko ;
Tada, Tomohiro .
GASTROINTESTINAL ENDOSCOPY, 2019, 89 (02) :357-+
[5]   The impact of reader fatigue on the accuracy of capsule endoscopy interpretation [J].
Beg, Sabina ;
Card, Tim ;
Sidhu, Reena ;
Wronska, Ewa ;
Ragunath, Krish .
DIGESTIVE AND LIVER DISEASE, 2021, 53 (08) :1028-1033
[6]   Capsule endoscopy in small bowel tumors: A multicenter Korean study [J].
Cheung, Dae Young ;
Lee, In-Seok ;
Chang, Dong Kyung ;
Kim, Jin Oh ;
Cheon, Jae Hee ;
Jang, Byung Ik ;
Kim, Yong-Sik ;
Park, Cheol Hee ;
Lee, Kwang Jae ;
Shim, Ki-Nam ;
Ryu, Ji-Kon ;
Do, Jae-Hyuk ;
Moon, Jeong-Seop ;
Ye, Byong Duk ;
Kim, Kyung-Jo ;
Lim, Yun Jeong ;
Choi, Myung-Gyu ;
Chun, Hoon-Jai .
JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2010, 25 (06) :1079-1086
[7]   Mapping the distribution of small bowel angioectasias [J].
Davie, Matt ;
Yung, Diana E. ;
Douglas, Sarah ;
Plevris, John N. ;
Koulaouzidis, Anastasios .
SCANDINAVIAN JOURNAL OF GASTROENTEROLOGY, 2019, 54 (05) :597-602
[8]   Gastroenterologist-Level Identification of Small-Bowel Diseases and Normal Variants by Capsule Endoscopy Using a Deep-Learning Model [J].
Ding, Zhen ;
Shi, Huiying ;
Zhang, Hao ;
Meng, Lingjun ;
Fan, Mengke ;
Han, Chaoqun ;
Zhang, Kun ;
Ming, Fanhua ;
Xie, Xiaoping ;
Liu, Hao ;
Liu, Jun ;
Lin, Rong ;
Hou, Xiaohua .
GASTROENTEROLOGY, 2019, 157 (04) :1044-+
[9]   Artificial intelligence in small bowel capsule endoscopy - current status, challenges and future promise [J].
Dray, Xavier ;
Iakovidis, Dimitris ;
Houdeville, Charles ;
Jover, Rodrigo ;
Diamantis, Dimitris ;
Histace, Aymeric ;
Koulaouzidis, Anastasios .
JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2021, 36 (01) :12-19
[10]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+