The Decomposition of Global Conformal Invariants: Some Technical Proofs. I

被引:3
作者
Alexakis, Spyros [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 1A1, Canada
关键词
conormal geometry; renormalized volume; global invariants; Deser-Schwimmer conjecture;
D O I
10.3842/SIGMA.2011.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper forms part of a larger work where we prove a conjecture of Deser and Schwimmer regarding the algebraic structure of "global conformal invariants"; these are defined to be conformally invariant integrals of geometric scalars. The conjecture asserts that the integrand of any such integral can be expressed as a linear combination of a local conformal invariant, a divergence and of the Chern-Gauss-Bonnet integrand.
引用
收藏
页数:41
相关论文
共 27 条
[1]  
ALEXAKIS S, DECOMPOSITION UNPUB
[2]  
ALEXAKIS S, ARXIV09123764
[3]  
ALEXAKIS S, ARXIV09123761
[4]   On the decomposition of global conformal invariants II [J].
Alexakis, Spyros .
ADVANCES IN MATHEMATICS, 2006, 206 (02) :466-502
[5]   On the decomposition of global conformal invariants, I [J].
Alexakis, Spyros .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1241-1306
[6]  
[Anonymous], ARXIV07100919
[7]  
[Anonymous], 1896, Amer. J. Math., DOI DOI 10.2307/2369787
[8]   HEAT EQUATION AND INDEX THEOREM [J].
ATIYAH, M ;
BOTT, R ;
PATODI, VK .
INVENTIONES MATHEMATICAE, 1973, 19 (04) :279-330
[9]   THOMASS STRUCTURE BUNDLE FOR CONFORMAL, PROJECTIVE AND RELATED STRUCTURES [J].
BAILEY, TN ;
EASTWOOD, MG ;
GOVER, AR .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1994, 24 (04) :1191-1217
[10]   INVARIANT-THEORY FOR CONFORMAL AND CR GEOMETRY [J].
BAILEY, TN ;
EASTWOOD, MG ;
GRAHAM, CR .
ANNALS OF MATHEMATICS, 1994, 139 (03) :491-552