Carbon Nanotubes as Electrically Active Nanoreactors for Multi-Step Inorganic Synthesis: Sequential Transformations of Molecules to Nanoclusters and Nanoclusters to Nanoribbons

被引:74
作者
Botos, Akos [1 ]
Biskupek, Johannes [2 ]
Chamberlain, Thomas W. [1 ,3 ]
Rance, Graham A. [1 ]
Stoppiello, Craig T. [1 ]
Sloan, Jeremy [4 ]
Liu, Zheng [5 ,6 ]
Suenaga, Kazutomo [5 ]
Kaiser, Ute [2 ]
Khlobystov, Andrei N. [1 ]
机构
[1] Univ Nottingham, Sch Chem, Univ Pk, Nottingham NG7 2RD, England
[2] Cent Facil Electron Microscopy, Electron Microscopy Grp Mat Sci, Albert Einstein Allee 11, D-89081 Ulm, Germany
[3] Univ Leeds, Inst Proc Res Dev, Sch Chem, Leeds LS2 9JT, W Yorkshire, England
[4] Univ Warwick, Dept Phys, Warwick Ctr Analyt Sci, Coventry CV4 7AL, W Midlands, England
[5] Natl Inst Adv Ind Sci & Technol, Nanomat Res Inst, Tsukuba, Ibaraki 3058565, Japan
[6] Inst Adv Ind Sci & Technol AIST, Inorgan Funct Mat Res Inst Natl, Nagoya, Aichi 4638560, Japan
基金
英国工程与自然科学研究理事会;
关键词
TRANSMISSION ELECTRON-MICROSCOPY; GRAPHENE NANORIBBONS; ATOMIC-SCALE; CHEMICAL-REACTIONS; METAL-CLUSTERS; CONFINEMENT; COALESCENCE; CATALYSIS; DYNAMICS; SURFACE;
D O I
10.1021/jacs.6b03633
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In organic synthesis, the composition and structure of products are predetermined by the reaction conditions; however, the synthesis of well-defined inorganic nanostructures often presents a significant challenge yielding nonstoichiometric or polymorphic products. In this study, confinement in the nanoscale cavities of single-walled carbon nanotubes (SWNTs) provides a new approach for multistep inorganic synthesis where sequential chemical transformations take place within the same nanotube. In the first step, SWNTs donate electrons to reactant iodine molecules (I-2), transforming them to iodide anions (I-). These then react with metal hexacarbonyls (M(CO)(6), M = Mo or W) in the next step, yielding anionic nanoclusters [M6I14](2-), the size and composition of which are strictly dictated by the nanotube cavity, as demonstrated by aberration-corrected high resolution transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy. Atoms in the nanoclusters [M6I14](2-) are arranged in a perfect octahedral geometry and can engage in further chemical reactions within the nanotube, either reacting with each other leading to a new polymeric phase of molybdenum iodide [Mo6I12](n) or with hydrogen sulfide gas giving rise to nanoribbons of molybdenum/tungsten disulfide [MS2](n) in the third step of the synthesis. Electron microscopy measurements demonstrate that the products of the multistep inorganic transformations are precisely controlled by the SWNT nanoreactor with complementary Raman spectroscopy revealing the remarkable property of SWNTs to act as a reservoir of electrons during the chemical transformation. The electron transfer from the host nanotube to the reacting guest molecules is essential for stabilizing the anionic metal iodide nanoclusters and for their further transformation to metal disulfide nanoribbons synthesized in the nanotubes in high yield.
引用
收藏
页码:8175 / 8183
页数:9
相关论文
共 41 条
[1]   Two-Dimensional Coalescence Dynamics of Encapsulated Metallofullerenes in Carbon Nanotubes [J].
Allen, Christopher S. ;
Ito, Yasuhiro ;
Robertson, Alex W. ;
Shinohara, Hisanori ;
Warner, Jamie H. .
ACS NANO, 2011, 5 (12) :10084-10089
[2]   Interactions and Chemical Transformations of Coronene Inside and Outside Carbon Nanotubes [J].
Botka, Bea ;
Fuestoes, Melinda E. ;
Tohati, Hajnalka M. ;
Nemeth, Katalin ;
Klupp, Gyoengyi ;
Szekrenyes, Zsolt ;
Kocsis, Dorina ;
Utczas, Margita ;
Szekely, Edit ;
Vaczi, Tamas ;
Tarczay, Gyoergy ;
Hackl, Rudi ;
Chamberlain, Thomas W. ;
Khlobystov, Andrei N. ;
Kamaras, Katalin .
SMALL, 2014, 10 (07) :1369-1378
[3]   Chemical reactions inside single-walled carbon nano test-tubes [J].
Britz, DA ;
Khlobystov, AN ;
Porfyrakis, K ;
Ardavan, A ;
Briggs, GAD .
CHEMICAL COMMUNICATIONS, 2005, (01) :37-39
[4]   Noncovalent interactions of molecules with single walled carbon nanotubes [J].
Britz, David A. ;
Khlobystov, Andrei N. .
CHEMICAL SOCIETY REVIEWS, 2006, 35 (07) :637-659
[5]   Isotope Substitution Extends the Lifetime of Organic Molecules in Transmission Electron Microscopy [J].
Chamberlain, Thomas W. ;
Biskupek, Johannes ;
Skowron, Stephen T. ;
Bayliss, Peter A. ;
Bichoutskaia, Elena ;
Kaiser, Ute ;
Khlobystov, Andrei N. .
SMALL, 2015, 11 (05) :622-629
[6]   Catalytic nanoreactors in continuous flow: hydrogenation inside single-walled carbon nanotubes using supercritical CO2 [J].
Chamberlain, Thomas W. ;
Earley, James H. ;
Anderson, Daniel P. ;
Khlobystov, Andrei N. ;
Bourne, Richard A. .
CHEMICAL COMMUNICATIONS, 2014, 50 (40) :5200-5202
[7]   Formation of uncapped nanometre-sized metal particles by decomposition of metal carbonyls in carbon nanotubes [J].
Chamberlain, Thomas W. ;
Zoberbier, Thilo ;
Biskupek, Johannes ;
Botos, Akos ;
Kaiser, Ute ;
Khlobystov, Andrei N. .
CHEMICAL SCIENCE, 2012, 3 (06) :1919-1924
[8]   Size, Structure, and Helical Twist of Graphene Nanoribbons Controlled by Confinement in Carbon Nanotubes [J].
Chamberlain, Thomas W. ;
Biskupek, Johannes ;
Rance, Graham A. ;
Chuvilin, Andrey ;
Alexander, Thomas J. ;
Bichoutskaia, Elena ;
Kaiser, Ute ;
Khlobystov, Andrei N. .
ACS NANO, 2012, 6 (05) :3943-3953
[9]  
Chamberlain TW, 2011, NAT CHEM, V3, P732, DOI [10.1038/NCHEM.1115, 10.1038/nchem.1115]
[10]  
Chemov A. I., 2013, ACS NANO, V7, P6346