Controlled diffeomorphic extension of homeomorphisms

被引:4
作者
Koskela, Pekka [1 ]
Wang, Zhuang [1 ]
Xu, Haiqing [2 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, Finland
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
基金
芬兰科学院;
关键词
Poisson extension; Diffeomorphism; Chord-arc curve; JOHN DISKS; MAPPINGS; MAPS;
D O I
10.1016/j.na.2018.04.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be an internal chord-arc Jordan domain and phi : S -> partial derivative Omega be a homeomorphism. We show that f has finite dyadic energy if and only if phi has a diffeomorphic extension h : D -> Omega which has finite energy. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:586 / 600
页数:15
相关论文
共 11 条
[1]   Extremal mappings of finite distortion [J].
Astala, K. ;
Iwaniec, T. ;
Martin, G. J. ;
Onninen, J. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :655-702
[2]  
Broch OJ, 2006, ANN ACAD SCI FENN-M, V31, P13
[3]  
Gallardo D., 1988, PUBL MAT, V32, P261, DOI [10.5565/PUBLMAT3228809, 10.5565/PUBLMAT_32288_09, DOI 10.5565/PUBLMAT3228809]
[4]  
Gehring F. W., 2017, MATH SURVEYS MONOGRA, V216, P355
[5]   JOHN DISKS AND EXTENSION OF MAPS [J].
GHAMSARI, M ;
NAKKI, R ;
VAISALA, J .
MONATSHEFTE FUR MATHEMATIK, 1994, 117 (1-2) :63-94
[6]   Lp-INTEGRABILITY & WEAK TYPE L2-ESTIMATES FOR THE GRADIENT OF HARMONIC MAPPINGS OF D [J].
Iwaniec, Tadeusz ;
Martin, Gaven ;
Sbordone, Carlo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (01) :145-152
[7]  
Kneser H., 1926, Jahresber Deutsch Math-Verein, V35, P123
[8]  
Nakki R., 1991, EXPO MATH, V9, P9
[9]   Harmonic homeomorphisms of the closed disc to itself need be in W1,p, p < 2, but not W1,2 [J].
Verchota, Gregory C. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (03) :891-894
[10]  
Xu H., WEIGHTED ESTIM UNPUB