The nilpotence theorem for the algebraic K-theory of the sphere spectrum

被引:3
作者
Blumberg, Andrew J. [1 ]
Mandell, Michael A.
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
RINGS;
D O I
10.2140/gt.2017.21.3453
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that in the graded commutative ring K*(S), all positive degree elements are multiplicatively nilpotent. The analogous statements also hold for TC*(S)(p)(<^>) and K*(Z).
引用
收藏
页码:3453 / 3466
页数:14
相关论文
共 40 条
[1]  
[Anonymous], 1962, PROC INT C MATH
[2]  
[Anonymous], 1973, LECT NOTES MATH
[3]  
Balmer P, 2005, J REINE ANGEW MATH, V588, P149
[4]   Spectra, spectra, spectra - Tensor triangular spectra versus Zariski spectra of endomorphism rings [J].
Balmer, Paul .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (03) :1521-1563
[5]   VALUES OF ZETA FUNCTIONS AND L-ADIC EULER CHARACTERISTICS [J].
BAYER, P ;
NEUKIRCH, J .
INVENTIONES MATHEMATICAE, 1978, 50 (01) :35-64
[6]   Homology operations in the topological cyclic homology of a point [J].
Bergsaker, Hakon Schad ;
Rognes, John .
GEOMETRY & TOPOLOGY, 2010, 14 (02) :755-772
[7]  
Blumberg AJ, 2014, MEM AM MATH SOC
[8]   Uniqueness of the multiplicative cyclotomic trace [J].
Blumberg, Andrew J. ;
Gepner, David ;
Tabuada, Goncalo .
ADVANCES IN MATHEMATICS, 2014, 260 :191-232
[9]   A universal characterization of higher algebraic K-theory [J].
Blumberg, Andrew J. ;
Gepner, David ;
Tabuada, Goncalo .
GEOMETRY & TOPOLOGY, 2013, 17 (02) :733-838
[10]   Algebraic K-theory and abstract homotopy theory [J].
Blumberg, Andrew J. ;
Mandell, Michael A. .
ADVANCES IN MATHEMATICS, 2011, 226 (04) :3760-3812