ODD CYCLE ZERO FORCING PARAMETERS AND THE MINIMUM RANK OF GRAPH BLOWUPS

被引:3
作者
Lin, Jephian C. H. [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
Minimum rank; Maximum nullity; Loop graph; Zero forcing number; Odd cycle zero forcing number; Enhanced odd cycle zero forcing number; Blowup; Graph complement conjecture;
D O I
10.13001/1081-3810.2836
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The minimum rank problem for a simple graph G and a given field F is to determine the smallest possible rank among symmetric matrices over F whose i, j -entry, i not equal j, is nonzero whenever i is adjacent to j, and zero otherwise; the diagonal entries can be any element in F. In contrast, loop graphs G go one step further to restrict the diagonal i, i-entries as nonzero whenever i has a loop, and zero otherwise. When char F not equal 2, the odd cycle zero forcing number and the enhanced odd cycle zero forcing number are introduced as bounds for loop graphs and simple graphs, respectively. A relation between loop graphs and simple graphs through graph blowups is developed, so that the minimum rank problem of some families of simple graphs can be reduced to that of much smaller loop graphs.
引用
收藏
页码:42 / 59
页数:18
相关论文
共 13 条
  • [1] Computation of minimal rank and path cover number for certain graphs
    Barioli, F
    Fallat, S
    Hogben, L
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 392 : 289 - 303
  • [2] Zero forcing sets and the minimum rank of graphs
    Barioli, Francesco
    Barrett, Wayne
    Butler, Steve
    Cioaba, Sebastian M.
    Cvetkovic, Dragos
    Fallat, Shaun M.
    Godsil, Chris
    Haemers, Willem
    Hogben, Leslie
    Mikkelson, Rana
    Narayan, Sivaram
    Pryporova, Olga
    Sciriha, Irene
    So, Wasin
    Stevanovic, Dragan
    van der Holst, Hein
    Vander Meulen, Kevin N.
    Wehe, Amy Wangsness
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1628 - 1648
  • [3] Parameters Related to Tree-Width, Zero Forcing, and Maximum Nullity of a Graph
    Barioli, Francesco
    Barrett, Wayne
    Fallat, Shaun M.
    Hall, H. Tracy
    Hogben, Leslie
    Shader, Bryan
    van den Driessche, P.
    van der Holst, Hein
    [J]. JOURNAL OF GRAPH THEORY, 2013, 72 (02) : 146 - 177
  • [4] On the graph complement conjecture for minimum rank
    Barioli, Francesco
    Barrett, Wayne
    Fallat, Shaun M.
    Hall, H. Tracy
    Hogben, Leslie
    van der Holst, Hein
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) : 4373 - 4391
  • [5] Zero forcing parameters and minimum rank problems
    Barioli, Francesco
    Barrett, Wayne
    Fallat, Shaun M.
    Hall, H. Tracy
    Hogben, Leslie
    Shader, Bryan
    van den Driessche, P.
    van der Holst, Hein
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (02) : 401 - 411
  • [6] ON THE MINIMUM RANK OF NOT NECESSARILY SYMMETRIC MATRICES: A PRELIMINARY STUDY
    Barioli, Francesco
    Fallat, Shaun M.
    Hall, H. Tracy
    Hershkowitz, Daniel
    Hogben, Leslie
    Van der Holst, Hein
    Shader, Bryan
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 126 - 145
  • [7] Bozeman C, 2014, ELECTRON J LINEAR AL, V27, P907
  • [8] Techniques for determining the minimum rank of a small graph
    DeLoss, Laura
    Grout, Jason
    Hogben, Leslie
    McKay, Tracy
    Smith, Jason
    Tims, Geoff
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2995 - 3001
  • [9] Positive semidefinite zero forcing
    Ekstrand, Jason
    Erickson, Craig
    Hall, H. Tracy
    Hay, Diana
    Hogben, Leslie
    Johnson, Ryan
    Kingsley, Nicole
    Osborne, Steven
    Peters, Travis
    Roat, Jolie
    Ross, Arianne
    Row, Darren D.
    Warnberg, Nathan
    Young, Michael
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (07) : 1862 - 1874
  • [10] Fallat S., 2013, Handbook of Linear Algebra, V2nd