A manifestly covariant Hamiltonian formalism for dynamical geometry

被引:0
作者
Nester, James M. [1 ,2 ]
机构
[1] Natl Cent Univ, Dept Phys, Inst Astron, Chungli 320, Taiwan
[2] Natl Cent Univ, Ctr Math & Theoret Phys, Chungli 320, Taiwan
来源
PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT | 2008年 / 172期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A frame independent, manifestly 4-covariant, reformulation of our covariant Hamiltonian formalism for dynamical geometry is presented. The validity of all the steps in the derivation of the Hamiltonian and the exact meaning of the quasi-local Hamiltonian boundary term expressions for the energy-momentum and angular momentum are thereby clarified.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 17 条
[1]   THE POINCARE GROUP AS THE SYMMETRY GROUP OF CANONICAL GENERAL-RELATIVITY [J].
BEIG, R ;
MURCHADHA, NO .
ANNALS OF PHYSICS, 1987, 174 (02) :463-498
[2]  
CHANG CC, 2000, GRAVITATION ASTROPHY, P163
[3]  
Chen C-M., 2000, GRAV COSMOL, V6, P257
[4]   Hamiltonian boundary term and quasilocal energy flux [J].
Chen, CM ;
Nester, JM ;
Tung, RS .
PHYSICAL REVIEW D, 2005, 72 (10)
[5]   Quasilocal quantities for general relativity and other gravity theories [J].
Chen, CM ;
Nester, JM .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (04) :1279-1304
[6]   QUASI-LOCAL ENERGY-MOMENTUM FOR GEOMETRIC GRAVITY THEORIES [J].
CHEN, CM ;
NESTER, JM ;
TUNG, RS .
PHYSICS LETTERS A, 1995, 203 (01) :5-11
[7]   METRIC-AFFINE GAUGE-THEORY OF GRAVITY - FIELD-EQUATIONS, NOETHER IDENTITIES, WORLD SPINORS, AND BREAKING OF DILATION INVARIANCE [J].
HEHL, FW ;
MCCREA, JD ;
MIELKE, EW ;
NEEMAN, Y .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 258 (1-2) :1-171
[8]  
Kobayashi S., 1969, FDN DIFFERENTIAL GEO, V1
[9]  
Misner CW., 1973, Gravitation
[10]  
Nester J. M., 1984, Introduction to Kaluza-Klein Theories. Workshop on Kaluza-Klein Theories, P83