Fuzzy mixed-prototype clustering algorithm for microarray data analysis

被引:7
作者
Liu, Jin [1 ]
Pham, Tuan D. [2 ]
Yan, Hong [3 ]
Liang, Zhizhen [1 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci, Xuzhou 221008, Jiangsu, Peoples R China
[2] Linkoping Univ, Dept Biomed Engn, S-58183 Linkoping, Sweden
[3] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
FMP; Microarray data analysis; Fuzzy clustering; EXTREME LEARNING-MACHINE; GENE-EXPRESSION; CLASSIFICATION;
D O I
10.1016/j.neucom.2017.06.083
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Being motivated by combining the advantages of hyperplane-based pattern analysis and fuzzy clustering techniques, we present in this paper a fuzzy mix-prototype (FMP) clustering for microarray data analysis. By integrating spherical and hyper-planar cluster prototypes, the FMP is capable of capturing latent data models with both spherical and non-spherical geometric structures. Our contributions of the paper can be summarized into three folds: first, the objective function of the FMP is formulated. Second, an iterative solution which minimizes the objective function under given constraints is derived. Third, the effectiveness of the proposed FMP is demonstrated through experiments on yeast and leukemia data sets. (c) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 54
页数:13
相关论文
共 36 条
  • [1] MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
    Armstrong, SA
    Staunton, JE
    Silverman, LB
    Pieters, R
    de Boer, ML
    Minden, MD
    Sallan, SE
    Lander, ES
    Golub, TR
    Korsmeyer, SJ
    [J]. NATURE GENETICS, 2002, 30 (01) : 41 - 47
  • [2] DETECTION AND CHARACTERIZATION OF CLUSTER SUBSTRUCTURE .1. LINEAR STRUCTURE - FUZZY C-LINES
    BEZDEK, JC
    CORAY, C
    GUNDERSON, R
    WATSON, J
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1981, 40 (02) : 339 - 357
  • [3] k-plane clustering
    Bradley, PS
    Mangasarian, OL
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2000, 16 (01) : 23 - 32
  • [4] A tutorial on Support Vector Machines for pattern recognition
    Burges, CJC
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) : 121 - 167
  • [5] Exploring the metabolic and genetic control of gene expression on a genomic scale
    DeRisi, JL
    Iyer, VR
    Brown, PO
    [J]. SCIENCE, 1997, 278 (5338) : 680 - 686
  • [6] Dhyani K, 2008, COMM COM INF SC, V14, P87
  • [7] Weighted linear loss multiple birth support vector machine based on information granulation for multi-class classification
    Ding, Shifei
    Zhang, Xiekai
    An, Yuexuan
    Xue, Yu
    [J]. PATTERN RECOGNITION, 2017, 67 : 32 - 46
  • [8] Wavelet twin support vector machines based on glowworm swarm optimization
    Ding, Shifei
    An, Yuexuan
    Zhang, Xiekai
    Wu, Fulin
    Xue, Yu
    [J]. NEUROCOMPUTING, 2017, 225 : 157 - 163
  • [9] Recent advances in Support Vector Machines
    Ding, Shifei
    Shi, Zhongzhi
    Tao, Dacheng
    An, Bo
    [J]. NEUROCOMPUTING, 2016, 211 : 1 - 3
  • [10] Multicategory proximal support vector machine classifiers
    Fung, GM
    Mangasarian, OL
    [J]. MACHINE LEARNING, 2005, 59 (1-2) : 77 - 97