Incorporating initial treatments improves performance of a mortality prediction model for patients with sepsis

被引:10
|
作者
Lagu, Tara [1 ,2 ,3 ]
Rothberg, Michael B. [1 ,2 ,3 ]
Nathanson, Brian H. [4 ]
Steingrub, Jay S. [1 ,3 ,5 ]
Lindenauer, Peter K. [1 ,3 ]
机构
[1] Baystate Med Ctr, Ctr Qual Care Res, Springfield, MA 01199 USA
[2] Baystate Med Ctr, Div Gen Internal Med & Geriatr, Springfield, MA 01199 USA
[3] Tufts Univ, Sch Med, Dept Med, Boston, MA 02111 USA
[4] OptiStatim LLC, Longmeadow, MA USA
[5] Baystate Med Ctr, Div Crit Care Med, Springfield, MA 01199 USA
关键词
sepsis; severity score; severity of illness; mortality prediction; INTENSIVE-CARE-UNIT; RISK-ADJUSTMENT; ACUTE PHYSIOLOGY; VALIDATION; SEVERITY; STATES; RATES;
D O I
10.1002/pds.3229
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Purpose Mortality prediction models can be used to adjust for presenting severity of illness in observational studies of treatment effectiveness. We aimed to determine the incremental benefit of adding information about critical care services to a sepsis mortality prediction model. Methods In a retrospective cohort of 166-931 eligible sepsis patients at 309 hospitals, we developed nested logistic regression models to predict mortality at the patient level. Our initial model included only demographic information. We then added progressively more detailed information such as comorbidities and initial treatments. We calculated each model's area under the receiver operating characteristic curve (AUROC) and also used a sheaf coefficient analysis to determine the relative effect of each additional group of variables. Results Model discrimination increased as more detailed patient information was added. With demographics alone, the AUROC was 0.59; adding comorbidities increased the AUROC to 0.67. The final model, which took into account mixed (hierarchical) effects at the hospital level as well as initial treatments administered within the first two hospital days, resulted in an AUROC of 0.78. The standardized sheaf coefficient for the initial treatments was approximately 30% greater than that for demographics or infection source. Conclusions A sepsis disease risk score that incorporates information about the use of mechanical ventilation and vasopressors is superior to models that rely only on demographic information and comorbidities. Until administrative datasets include clinical information (such as vital signs and laboratory results), models such as this one could allow researchers to conduct observational studies of treatment effectiveness in sepsis patients. Copyright (C) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:44 / 52
页数:9
相关论文
共 50 条
  • [41] Early prediction of mortality at sepsis diagnosis time in critically ill patients by using interpretable machine learning
    Cheng, Yi-Wei
    Kuo, Po-Chih
    Chen, Shih-Hong
    Kuo, Yu-Ting
    Liu, Tyng-Luh
    Chan, Wing-Sum
    Chan, Kuang-Cheng
    Yeh, Yu-Chang
    JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2024, 38 (02) : 271 - 279
  • [42] A combined score of pro- and anti-inflammatory interleukins improves mortality prediction in severe sepsis
    Andaluz-Ojeda, David
    Bobillo, Felipe
    Iglesias, Veronica
    Almansa, Raquel
    Rico, Lucia
    Gandia, Francisco
    Resino, Salvador
    Tamayo, Eduardo
    Ortiz de Lejarazu, Raul
    Bermejo-Martin, Jesus F.
    CYTOKINE, 2012, 57 (03) : 332 - 336
  • [43] Fluid resuscitation influences cardiovascular performance and mortality in a murine model of sepsis
    Zanotti-Cavazzoni, Sergio L.
    Guglielmi, Massimiliano
    Parrillo, Joseph E.
    Walker, Tracy
    Dellinger, R. Phillip
    Hollenberg, Steven M.
    INTENSIVE CARE MEDICINE, 2009, 35 (04) : 748 - 754
  • [44] Fluid resuscitation influences cardiovascular performance and mortality in a murine model of sepsis
    Sergio L. Zanotti-Cavazzoni
    Massimiliano Guglielmi
    Joseph E. Parrillo
    Tracy Walker
    R. Phillip Dellinger
    Steven M. Hollenberg
    Intensive Care Medicine, 2009, 35 : 748 - 754
  • [45] Pre-admission functional status impacts the performance of the APACHE IV model of mortality prediction in critically ill patients
    Krinsley, James S.
    Wasser, Thomas
    Kang, Gina
    Bagshaw, Sean M.
    CRITICAL CARE, 2017, 21
  • [46] Prediction of mortality in sepsis patients using stacked ensemble machine learning algorithm
    Babu, M.
    Sappani, M.
    Joy, M.
    Chandiraseharan, V. K.
    Jeyaseelan, L.
    Sudarsanam, T. D.
    JOURNAL OF POSTGRADUATE MEDICINE, 2024, 70 (04) : 209 - 216
  • [47] Prediction of 30-day mortality for ICU patients with Sepsis-3
    Yu, Zhijiang
    Ashrafi, Negin
    Li, Hexin
    Alaei, Kamiar
    Pishgar, Maryam
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [48] A Machine Learning-Based Prediction of Hospital Mortality in Patients With Postoperative Sepsis
    Yao, Ren-qi
    Jin, Xin
    Wang, Guo-wei
    Yu, Yue
    Wu, Guo-sheng
    Zhu, Yi-bing
    Li, Lin
    Li, Yu-xuan
    Zhao, Peng-yue
    Zhu, Sheng-yu
    Xia, Zhao-fan
    Ren, Chao
    Yao, Yong-ming
    FRONTIERS IN MEDICINE, 2020, 7
  • [49] A new prediction model for acute kidney injury in patients with sepsis
    Fan, Chenyu
    Ding, Xiu
    Song, Yanli
    ANNALS OF PALLIATIVE MEDICINE, 2021, 10 (02) : 1772 - 1778
  • [50] A Machine Learning Model for Accurate Prediction of Sepsis in ICU Patients
    Wang, Dong
    Li, Jinbo
    Sun, Yali
    Ding, Xianfei
    Zhang, Xiaojuan
    Liu, Shaohua
    Han, Bing
    Wang, Haixu
    Duan, Xiaoguang
    Sun, Tongwen
    FRONTIERS IN PUBLIC HEALTH, 2021, 9