Pt3Co Octapods as Superior Catalysts of CO2 Hydrogenation

被引:189
作者
Khan, Munir Ullah [1 ,2 ]
Wang, Liangbing [1 ,2 ]
Liu, Zhao [1 ,2 ]
Gao, Zehua [1 ,2 ]
Wang, Shenpeng [1 ,2 ]
Li, Hongliang [1 ,2 ]
Zhang, Wenbo [1 ,2 ]
Wang, Menglin [1 ,2 ]
Wang, Zhengfei [1 ,2 ]
Ma, Chao [1 ,2 ]
Zeng, Jie [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei Sci Ctr, Natl Synchrotron Radiat Lab, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China
关键词
carbon dioxide; charge transfer; cobalt; hydrogenation; platinum; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; PHOTOCHEMICAL REDUCTION; OXIDE CATALYST; CONVERSION; METHANOL; NANOCRYSTALS; SURFACES; LIGHT;
D O I
10.1002/anie.201602512
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As the electron transfer to CO2 is a critical step in the activation of CO2, it is of significant importance to engineer the electronic properties of CO2 hydrogenation catalysts to enhance their activity. Herein, we prepared Pt3Co nanocrystals with improved catalytic performance towards CO2 hydrogenation to methanol. Pt3Co octapods, Pt3Co nanocubes, Pt octapods, and Pt nanocubes were tested, and the Pt3Co octapods achieved the best catalytic activity. Both the presence of multiple sharp tips and charge transfer between Pt and Co enabled the accumulation of negative charges on the Pt atoms in the vertices of the Pt3Co octapods. Moreover, infrared reflection absorption spectroscopy confirmed that the high negative charge density at the Pt atoms in the vertices of the Pt3Co octapods promotes the activation of CO2 and accordingly enhances the catalytic activity.
引用
收藏
页码:9548 / 9552
页数:5
相关论文
共 52 条
[31]   Light-Induced Cation Exchange for Copper Sulfide Based CO2 Reduction [J].
Manzi, Aurora ;
Simon, Thomas ;
Sonnleitner, Clemens ;
Doeblinger, Markus ;
Wyrwich, Regina ;
Stern, Omar ;
Stolarczyk, Jacek K. ;
Feldmann, Jochen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (44) :14007-14010
[32]   Isolated Metal Active Site Concentration and Stability Control Catalytic CO2 Reduction Selectivity [J].
Matsubu, John C. ;
Yang, Vanessa N. ;
Christopher, Phillip .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (08) :3076-3084
[33]  
MENG X, 2014, ANGEW CHEM, V126, P11662
[34]   Photothermal Conversion of CO2 into CH4 with H2 over Group VIII Nanocatalysts: An Alternative Approach for Solar Fuel Production [J].
Meng, Xianguang ;
Wang, Tao ;
Liu, Lequan ;
Ouyang, Shuxin ;
Li, Peng ;
Hu, Huilin ;
Kako, Tetsuya ;
Iwai, Hideo ;
Tanaka, Akihiro ;
Ye, Jinhua .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (43) :11478-11482
[35]   Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media [J].
Moret, Severine ;
Dyson, Paul J. ;
Laurenczy, Gabor .
NATURE COMMUNICATIONS, 2014, 5
[36]  
Mudiyanselage K., 2013, Angew. Chem. Int. Ed, V125, P5205, DOI [10.1002/ange.201210077, DOI 10.1002/ANGE.201210077]
[37]   Importance of the Metal-Oxide Interface in Catalysis: In Situ Studies of the Water-Gas Shift Reaction by Ambient-Pressure X-ray Photoelectron Spectroscopy [J].
Mudiyanselage, Kumudu ;
Senanayake, Sanjaya D. ;
Feria, Leticia ;
Kundu, Shankhamala ;
Baber, Ashleigh E. ;
Graciani, Jesus ;
Vidal, Alba B. ;
Agnoli, Stefano ;
Evans, Jaime ;
Chang, Rui ;
Axnanda, Stephanus ;
Liu, Zhi ;
Sanz, Javier F. ;
Liu, Ping ;
Rodriguez, Jose A. ;
Stacchiola, Dario J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (19) :5101-5105
[38]   Throwing New Light on the Reduction of CO2 [J].
Ozin, Geoffrey A. .
ADVANCED MATERIALS, 2015, 27 (11) :1957-1963
[39]   SCF AB-INITIO GROUND-STATE ENERGY SURFACES FOR CO2 AND CO2- [J].
PACANSKY, J ;
WAHLGREN, U ;
BAGUS, PS .
JOURNAL OF CHEMICAL PHYSICS, 1975, 62 (07) :2740-2744
[40]   IR investigations of CO2 adsorption on chromia surfaces:: Cr2O3 (0001)/Cr(110) versus polycrystalline α-Cr2O3 [J].
Seiferth, O ;
Wolter, K ;
Dillmann, B ;
Klivenyi, G ;
Freund, HJ ;
Scarano, D ;
Zecchina, A .
SURFACE SCIENCE, 1999, 421 (1-2) :176-190