Alternating minima and maxima, Nash equilibria and Bounded Arithmetic

被引:5
作者
Pudlak, Pavel [1 ]
Thapen, Neil [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CZ-11567 Prague 1, Czech Republic
关键词
Proof complexity; Bounded arithmetic; Search problems; Finite games; Computational complexity; Equilibria; COMPLEXITY;
D O I
10.1016/j.apal.2011.06.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the least number principle for (Sigma) over cap (b)(k)(strict Sigma(b)(k)) formulas can be characterized by the existence of alternating minima and maxima of length k. We show simple prenex forms of these formulas whose herbrandizations (by polynomial time functions) are for all(Sigma) over cap (b)(l) formulas that characterize for all(Sigma) over cap (b)(l) theorems of the levels T-2(k) of the Bounded Arithmetic Hierarchy, and we derive from this another characterization, in terms of a search problem about finding pure Nash equilibria in k-turn games. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:604 / 614
页数:11
相关论文
共 16 条
  • [1] Alvarez C, 2005, LECT NOTES COMPUT SC, V3827, P634, DOI 10.1007/11602613_64
  • [2] [Anonymous], 1986, Bounded Arithmetic
  • [3] [Anonymous], 1947, The theory of Games and economic behavior
  • [4] The relative complexity of NP search problems
    Beame, P
    Cook, S
    Edmonds, J
    Impagliazzo, R
    Pitassi, T
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1998, 57 (01) : 3 - 19
  • [5] Beckmann A., 152008 SWANS U CSR
  • [6] AN APPLICATION OF BOOLEAN COMPLEXITY TO SEPARATION PROBLEMS IN BOUNDED ARITHMETIC
    BUSS, SR
    KRAJICEK, J
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1994, 69 : 1 - 21
  • [7] Chen XK, 2006, PROCEEDINGS OF THE 25TH IASTED INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION, AND CONTROL, P261
  • [8] The Complexity of Computing a Nash Equilibrium
    Daskalakis, Constantinos
    Goldberg, Paul W.
    Papadimitriou, Christos H.
    [J]. COMMUNICATIONS OF THE ACM, 2009, 52 (02) : 89 - 97
  • [9] Fabrikant A., 2004, P 36 ACM S THEORY CO, P604, DOI DOI 10.1145/1007352.1007445
  • [10] WHAT ARE THE FOR-ALL-SIGMA(B)(1)-CONSEQUENCES OF T-2(1) AND T-2(2)
    FERREIRA, F
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 1995, 75 (1-2) : 79 - 88