OUTLINE OF THE PROOF OF THE GEOMETRIC LANGLANDS CONJECTURE FOR GL2

被引:0
作者
Gaitsgory, Dennis [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Geometric Langlands correspondence; derived algebraic geometry; REPRESENTATIONS; DUALITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We outline a proof of the categorical geometric Langlands conjecture for GL(2), as formulated in [AG], modulo a number of more tractable statements that we call Quasi-Theorems.
引用
收藏
页码:1 / 112
页数:112
相关论文
共 48 条
  • [21] Analysis of free products of the general linear groups GL2(Qp) and Hecke algebras H(GL2(Qp)) over primes p
    Cho, Ilwoo
    Jorgensen, Palle E. T.
    REPRESENTATION THEORY AND HARMONIC ANALYSIS ON SYMMETRIC SPACES, 2018, 714 : 23 - 75
  • [22] AUTOMORPHIC SL2-PERIODS AND THE SUBCONVEXITY PROBLEM FOR GL2 x GL3
    Pal, Aprameyo
    de Vera-Piquero, Carlos
    MATHEMATIKA, 2020, 66 (04) : 855 - 899
  • [23] TILING BRANCHING MULTIPLICITY SPACES WITH GL2 PATTERN BLOCKS
    Kim, Sangjib
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 94 (03) : 362 - 374
  • [24] Companion points and locally analytic socle for GL2(L)
    Ding, Yiwen
    ISRAEL JOURNAL OF MATHEMATICS, 2019, 231 (01) : 47 - 122
  • [25] Irregular loci in the Emerton-Gee stack for GL2
    Bellovin, Rebecca
    Borade, Neelima
    Hilado, Anton
    Kansal, Kalyani
    Lee, Heejong
    Levin, Brandon
    Savitt, David
    Wiersema, Hanneke
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (814): : 9 - 46
  • [26] Modularity of GL2(Fp)-representations over CM fields
    Allen, Patrick B.
    Khare, Chandrashekhar
    Thorne, Jack A.
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2023, 11 (01) : 1 - 158
  • [27] MASS EQUIDISTRIBUTION FOR AUTOMORPHIC FORMS OF COHOMOLOGICAL TYPE ON GL2
    Marshall, Simon
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (04) : 1051 - 1103
  • [28] Explicit Burgess-like subconvex bounds for GL2 x GL1
    Wu, Han
    FORUM MATHEMATICUM, 2020, 32 (05) : 1211 - 1251
  • [29] A BOUND FOR THE CONDUCTOR OF AN OPEN SUBGROUP OF GL2 ASSOCIATED TO AN ELLIPTIC CURVE
    Jones, Nathan
    PACIFIC JOURNAL OF MATHEMATICS, 2020, 308 (02) : 307 - 331
  • [30] The Weyl extension algebra of GL2((F)over-barp)
    Miemietz, Vanessa
    Turner, Will
    ADVANCES IN MATHEMATICS, 2013, 246 : 144 - 197