P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities

被引:137
作者
Bouet, JY [1 ]
Funnell, BE [1 ]
机构
[1] Univ Toronto, Dept Mol & Med Genet, Toronto, ON M5S 1A8, Canada
关键词
ATP hydrolysis; bacterial chromosome segregation; centromere; ParB; parOP;
D O I
10.1093/emboj/18.5.1415
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The partition system of pi plasmids is composed of two proteins, ParA and ParB, and a cis-acting site parS, parS is wrapped around ParB and Escherichia call IHF protein in a higher order nucleoprotein complex called the partition complex. ParA is an ATPase that autoregulates the expression of the par operon and has an essential but unknown function in the partition process. In this study we demonstrate a direct interaction between ParA and the pi partition complex. The interaction was strictly dependent on ParB and ATP, The consequence of this interaction depended on the ParB concentration. At high ParB levels, ParA was recruited to the partition complex via a ParA-ParB interaction, but at low ParB levels, ParA removed or disassembled ParB from the partition complex. ADP could not support these interactions, but could promote the site-specific DNA binding activity of ParA to parOP, the operator of the par operon. Conversely, ATP could not support a stable interaction of ParA with parOP in this assay, Our data suggest that ParA-ADP is the repressor of the par operon, and ParA-ATP, by interacting with the partition complex, plays a direct role in partition. Therefore, one role of adenine nucleotide binding and hydrolysis by ParA is that of a molecular switch controlling entry into two separate pathways in which ParA plays different roles.
引用
收藏
页码:1415 / 1424
页数:10
相关论文
共 47 条
[1]   PARTITION OF UNIT-COPY MINIPLASMIDS TO DAUGHTER CELLS .3. THE DNA-SEQUENCE AND FUNCTIONAL-ORGANIZATION OF THE P1-PARTITION REGION [J].
ABELES, AL ;
FRIEDMAN, SA ;
AUSTIN, SJ .
JOURNAL OF MOLECULAR BIOLOGY, 1985, 185 (02) :261-272
[2]  
CROOKE E, 1992, J BIOL CHEM, V267, P16779
[3]   Modulation of the P1 plasmid partition protein ParA by ATP, ADP, and P1 ParB [J].
Davey, MJ ;
Funnell, BE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (24) :15286-15292
[4]  
DAVEY MJ, 1994, J BIOL CHEM, V269, P29908
[5]   SPECIFICITY SWITCHING OF THE P1 PLASMID CENTROMERE-LIKE SITE [J].
DAVIS, MA ;
MARTIN, KA ;
AUSTIN, SJ .
EMBO JOURNAL, 1990, 9 (04) :991-998
[6]   The P1 ParA protein and its ATPase activity play a direct role in the segregation of plasmid copies to daughter cells [J].
Davis, MA ;
Radnedge, L ;
Martin, KA ;
Hayes, F ;
Youngren, B ;
Austin, SJ .
MOLECULAR MICROBIOLOGY, 1996, 21 (05) :1029-1036
[7]   BIOCHEMICAL ACTIVITIES OF THE PARA PARTITION PROTEIN OF THE P1 PLASMID [J].
DAVIS, MA ;
MARTIN, KA ;
AUSTIN, SJ .
MOLECULAR MICROBIOLOGY, 1992, 6 (09) :1141-1147
[8]   RECOGNITION OF THE P1 PLASMID CENTROMERE ANALOG INVOLVES BINDING OF THE PARB PROTEIN AND IS MODIFIED BY A SPECIFIC HOST FACTOR [J].
DAVIS, MA ;
AUSTIN, SJ .
EMBO JOURNAL, 1988, 7 (06) :1881-1888
[9]   THE MIND PROTEIN IS A MEMBRANE ATPASE REQUIRED FOR THE CORRECT PLACEMENT OF THE ESCHERICHIA-COLI DIVISION SITE [J].
DEBOER, PAJ ;
CROSSLEY, RE ;
HAND, AR ;
ROTHFIELD, LI .
EMBO JOURNAL, 1991, 10 (13) :4371-4380
[10]  
FRANZEN JS, 1961, J BIOL CHEM, V236, P515