Using Singular Value Decomposition to Reduce Dimensionality of Initial Data Set

被引:2
作者
Uzhga-Rebrov, Oleg [1 ]
Kuleshova, Galina [2 ]
机构
[1] Rezekne Acad Technol, Informat & Commun Technol Res Ctr, Rezekne, Latvia
[2] Riga Tech Univ, Inst Informat Technol, Riga, Latvia
来源
2020 61ST INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND MANAGEMENT SCIENCE OF RIGA TECHNICAL UNIVERSITY (ITMS) | 2020年
关键词
left eigenvectors; matrix rank; right eigenvectors; singular value decomposition; singular value matrix;
D O I
10.1109/itms51158.2020.9259304
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The purpose of any data analysis is to extract essential information implicitly present in the data. To do this, it often seems necessary to transform the initial data into a form that allows one to identify and interpret the essential features of their structure. One of the most important tasks of data analysis is to reduce the dimension of the original data. The paper considers an approach to solving this problem based on singular value decomposition (SVD).
引用
收藏
页数:4
相关论文
共 15 条
  • [1] Abdi H., 2007, Encyclopedia of Measurement and Statistics, V907, P912
  • [2] Principles and procedures of exploratory data analysis
    Behrens, JT
    [J]. PSYCHOLOGICAL METHODS, 1997, 2 (02) : 131 - 160
  • [3] Beker K, SINGULAR VALUE DECOM
  • [4] Compression of facial images using the K-SVD algorithm
    Bryt, Ori
    Elad, Michael
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2008, 19 (04) : 270 - 282
  • [5] Dash P., 2014, INT J COMPUT APPL, V93, P21, DOI [10.5120/16243-5795, DOI 10.5120/16243]
  • [6] Clustering large graphs via the Singular Value Decomposition
    Drineas, P
    Frieze, A
    Kannan, R
    Vempala, S
    Vinay, V
    [J]. MACHINE LEARNING, 2004, 56 (1-3) : 9 - 33
  • [7] GOLUB G., 1965, J. Soc. Ind. Appl. Math. Ser. B: Numer. Anal., V2, P205, DOI 10.1137/0702016
  • [8] Mounika K., 2015, INT J ENG GEN SCI, V3, P1271
  • [9] ON THE EARLY HISTORY OF THE SINGULAR-VALUE DECOMPOSITION
    STEWART, GW
    [J]. SIAM REVIEW, 1993, 35 (04) : 551 - 566
  • [10] Pathway level analysis of gene expression using singular value decomposition
    Tomfohr, J
    Lu, J
    Kepler, TB
    [J]. BMC BIOINFORMATICS, 2005, 6 (1)