ON THE BOUNDARY OF THE SUPPORT OF SUPER-BROWNIAN MOTION

被引:6
作者
Mueller, Carl [1 ]
Mytnik, Leonid [2 ]
Perkins, Edwin [3 ]
机构
[1] Univ Rochester, Dept Math, Rochester, NY 14627 USA
[2] Technion Israel Inst Technol, Fac Ind Engn & Management, IL-32000 Haifa, Israel
[3] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
以色列科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Super-Brownian motion; Hausdorff dimension; stochastic partial differential equations; HEAT-EQUATION; POTENTIAL-THEORY; SUBORDINATORS; NONUNIQUENESS; COEFFICIENTS; ABSORPTION; UNIQUENESS; NOISE;
D O I
10.1214/16-AOP1141
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the density X(t, x) of one-dimensional super-Brownian motion and find the asymptotic behaviour of P(0 < X( t, x) <= a) as a down arrow 0 as well as the Hausdorff dimension of the boundary of the support of X(t, .). The answers are in terms of the leading eigenvalue of the Ornstein-Uhlenbeck generator with a particular killing term. This work is motivated in part by questions of pathwise uniqueness for associated stochastic partial differential equations.
引用
收藏
页码:3481 / 3534
页数:54
相关论文
共 21 条
[1]  
[Anonymous], 1955, FUNCTIONAL ANAL
[2]  
[Anonymous], 2002, Lecture Notes in Mathematics
[3]  
BREZIS H, 1986, ARCH RATION MECH AN, V95, P185, DOI 10.1007/BF00251357
[4]   PATHWISE NONUNIQUENESS FOR THE SPDES OF SOME SUPER-BROWNIAN MOTIONS WITH IMMIGRATION [J].
Chen, Yu-Ting .
ANNALS OF PROBABILITY, 2015, 43 (06) :3359-3467
[5]  
Coddington E. A., 1955, THEORY ORDINARY DIFF
[6]  
DAWSON DA, 1991, MEM AM MATH SOC, V93, pR4
[7]   DOMINATED VARIATION AND RELATED CONCEPTS AND TAUBERIAN-THEOREMS FOR LAPLACE TRANSFORMS [J].
DEHAAN, L ;
STADTMULLER, U .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 108 (02) :344-365
[8]   LOWER FUNCTIONS FOR INCREASING RANDOM WALKS AND SUBORDINATORS [J].
FRISTEDT, BE ;
PRUITT, WR .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 18 (03) :167-&
[9]   POTENTIAL THEORY OF SUBORDINATORS [J].
HAWKES, J .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 33 (02) :113-132
[10]  
HAWKES J, 1979, P LOND MATH SOC, V38, P335