Gaussian bounds for degenerate parabolic equations

被引:26
作者
Cruz-Uribe, D. [1 ]
Rios, Cristian [2 ]
机构
[1] Trinity Coll, Dept Math, Hartford, CT 06106 USA
[2] Univ Calgary, Calgary, AB T2N 1N4, Canada
关键词
kernel; Gaussian bounds; degenerate elliptic; degenerate parabolic;
D O I
10.1016/j.jfa.2008.01.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a real symmetric, degenerate elliptic matrix whose degeneracy is controlled by a weight w in the A(2) or QC class. We show that there is a heat kernel W-t (x, v) associated to the parabolic equation wu(t) = divA del u, and W-t satisfies classic Gaussian bounds: [GRAPHICS] We then use this bound to derive a number of other properties of the kernel. (c) 2008 Published by Elsevier Inc.
引用
收藏
页码:283 / 312
页数:30
相关论文
共 30 条
[1]  
[Anonymous], 1966, GRUNDLEHREN MATH WIS
[2]  
[Anonymous], 1998, HEAT KERNELS SPECTRA
[3]  
[Anonymous], JAN, DOI DOI 10.1016/J.JVS.2018.11.029
[4]  
[Anonymous], MATEMATICHE CATANIA
[5]  
[Anonymous], 1998, ASTERISQUE
[6]   BOUNDS FOR FUNDAMENTAL SOLUTION OF A PARABOLIC EQUATION [J].
ARONSON, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :890-&
[7]   The solution of the Kato square root problem for second order elliptic operators on Rn [J].
Auscher, P ;
Hofmann, S ;
Lacey, M ;
McIntosh, A ;
Tchamitchian, P .
ANNALS OF MATHEMATICS, 2002, 156 (02) :633-654
[8]   Regularity theorems and heat kernel for elliptic operators [J].
Auscher, P .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 :284-296
[9]   Heat kernels of second order complex elliptic operators and applications [J].
Auscher, P ;
McIntosh, A ;
Tchamitchian, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 152 (01) :22-73
[10]   DEGENERATE PARABOLIC EQUATIONS AND HARNACK INEQUALITY [J].
CHIARENZA, F ;
SERAPIONI, R .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1984, 137 :139-162