LOWER BOUNDS FOR BLOW-UP TIME IN SOME NON-LINEAR PARABOLIC PROBLEMS UNDER NEUMANN BOUNDARY CONDITIONS

被引:24
作者
Enache, Cristian [1 ]
机构
[1] Ovidius Univ, Dept Math & Informat, Constanta 900597, Romania
关键词
NONEXISTENCE;
D O I
10.1017/S0017089511000139
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with some non-linear initial-boundary value problems under homogeneous Neumann boundary conditions, in which the solutions may blow up in finite time. Using a first-order differential inequality technique, lower bounds for blow-up time are determined.
引用
收藏
页码:569 / 575
页数:7
相关论文
共 12 条
[2]  
Galaktionov VA, 2002, DISCRETE CONT DYN-A, V8, P399
[3]   EXISTENCE AND REGULARITY OF SOLUTIONS OF SEMILINEAR PARABOLIC INITIAL - BOUNDARY-VALUE PROBLEMS [J].
KIELHOFER, H .
MATHEMATISCHE ZEITSCHRIFT, 1975, 142 (02) :131-160
[4]   NONEXISTENCE OF GLOBAL WEAK SOLUTIONS TO SOME PROPERLY AND IMPROPERLY POSED PROBLEMS OF MATHEMATICAL PHYSICS - METHOD OF UNBOUNDED FOURIER COEFFICIENTS [J].
LEVINE, HA .
MATHEMATISCHE ANNALEN, 1975, 214 (03) :205-220
[5]   Blow-up phenomena for some nonlinear parabolic problems [J].
Payne, L. E. ;
Philippin, G. A. ;
Schaefer, P. W. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (10) :3495-3502
[6]   Lower bounds for blow-up time in parabolic problems under Dirichlet conditions [J].
Payne, L. E. ;
Schaefer, P. W. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (02) :1196-1205
[7]   Bounds for blow-up time for the heat equation under nonlinear boundary conditions [J].
Payne, L. E. ;
Schaefer, P. W. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 :1289-1296
[8]   Lower bounds for blow-up time in a nonlinear parabolic problem [J].
Payne, L. E. ;
Song, J. C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 354 (01) :394-396
[9]  
Payne L.E., 2006, Appl. Anal, V85, P1301
[10]  
Protter M. H., 1975, MAXIMUM PRINCIPLES D