Solitary waves in active-dissipative dispersive media

被引:72
作者
Kudryashov, NA
Zargaryan, ED
机构
[1] Department of Applied Mathematics, Moscow Stt. Eng. Physics Institute, Moscow 115409
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 24期
关键词
D O I
10.1088/0305-4470/29/24/029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Solitary waves in active-dissipative dispersive media are considered. The exact solutions in the form of solitary waves and kink-shaped waves are presented. The difference equation for numerical simulation of nonlinear waves is given. Numerical results of the interaction of solitary waves are discussed. It is shown that there is a solitary wave in active-dissipative dispersive media that has the soliton property.
引用
收藏
页码:8067 / 8077
页数:11
相关论文
共 12 条
[2]   PAINLEVE ANALYSIS AND BACKLUND TRANSFORMATION IN THE KURAMOTO-SIVASHINSKY EQUATION [J].
CONTE, R ;
MUSETTE, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (02) :169-177
[3]   INVARIANT PAINLEVE ANALYSIS OF PARTIAL-DIFFERENTIAL EQUATIONS [J].
CONTE, R .
PHYSICS LETTERS A, 1989, 140 (7-8) :383-390
[5]   EXACT-SOLUTIONS OF THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION [J].
KUDRYASHOV, NA .
PHYSICS LETTERS A, 1990, 147 (5-6) :287-291
[6]  
KUDRYASHOV NA, 1988, PMM-J APPL MATH MEC+, V52, P361
[7]   PERSISTENT PROPAGATION OF CONCENTRATION WAVES IN DISSIPATIVE MEDIA FAR FROM THERMAL EQUILIBRIUM [J].
KURAMOTO, Y ;
TSUZUKI, T .
PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (02) :356-369
[8]  
NICOLAEVSKY VN, 1985, DOKL AKAD NAUK SSSR, V283, P1321
[9]   INSTABILITIES, PATTERN-FORMATION, AND TURBULENCE IN FLAMES [J].
SIVASHINSKY, GI .
ANNUAL REVIEW OF FLUID MECHANICS, 1983, 15 :179-199
[10]  
Tatsumi T., 1984, TURBULENCE CHAOTIC P