RELIABILITY OF GENOTYPE-SPECIFIC PARAMETER ESTIMATION FOR CROP MODELS: INSIGHTS FROM A MARKOV CHAIN MONTE-CARLO ESTIMATION APPROACH

被引:7
|
作者
Acharya, S. [1 ]
Correll, M. [2 ]
Jones, J. W. [2 ]
Boote, K. J. [3 ]
Alderman, P. D. [4 ]
Hu, Z. [2 ]
Vallejos, C. E. [5 ]
机构
[1] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Agr & Biol Engn, Gainesville, FL USA
[3] Univ Florida, Dept Agron, Gainesville, FL 32611 USA
[4] Oklahoma State Univ, Dept Plant & Soil Sci, Stillwater, OK 74078 USA
[5] Univ Florida, Dept Hort Sci, Gainesville, FL USA
基金
美国国家科学基金会;
关键词
Crop models; Equifinality; Genotype-specific parameters; Markov chain Monte-Carlo; Parameterization; GENETIC COEFFICIENTS; PEANUT LINES; CULTIVAR COEFFICIENTS; UNCERTAINTY ANALYSIS; BAYESIAN-APPROACH; PERFORMANCE; GLUE; EQUIFINALITY; SENSITIVITY; SIMULATION;
D O I
10.13031/trans.12183
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Parameter estimation is a critical step in successful application of dynamic crop models to simulate crop growth and yield under various climatic and management scenarios. Although inverse modeling parameterization techniques significantly improve the predictive capabilities of models, whether these approaches can recover the true parameter values of a specific genotype or cultivar is seldom investigated. In this study, we applied a Markov Chain Monte-Carlo (MCMC) method to the DSSAT dry bean model to estimate (recover) the genotype-specific parameters (GSPs) of 150 synthetic recombinant inbred lines (RILs) of dry bean. The synthetic parents of the population were assigned contrasting GSP values obtained from a database, and each of these GSPs was associated with several quantitative trait loci. A standard inverse modeling approach that simultaneously estimated all GSPs generated a set of values that could reproduce the original synthetic observations, but many of the estimated GSP values significantly differed from the original values. However, when parameter estimation was carried out sequentially in a stepwise manner, according to the genetically controlled plant development process, most of the estimated parameters had values similar to the original values. Developmental parameters were more accurately estimated than those related to dry mass accumulation. This new approach appears to reduce the problem of equifinality in parameter estimation, and it is especially relevant if attempts are made to relate parameter values to individual genes.
引用
收藏
页码:1699 / 1712
页数:14
相关论文
共 50 条
  • [31] Generalized Likelihood Uncertainty Estimation and Markov Chain Monte Carlo Simulation to Prioritize TMDL Pollutant Allocations
    Mishra, Anurag
    Ahmadisharaf, Ebrahim
    Benham, Brian L.
    Wolfe, Mary Leigh
    Leman, Scotland C.
    Gallagher, Daniel L.
    Reckhow, Kenneth H.
    Smith, Eric P.
    JOURNAL OF HYDROLOGIC ENGINEERING, 2018, 23 (12)
  • [32] Joint Estimation of Pedigrees and Effective Population Size Using Markov Chain Monte Carlo
    Ko, Amy
    Nielsen, Rasmus
    GENETICS, 2019, 212 (03) : 855 - 868
  • [33] Model Order Identification for Cable Force Estimation Using a Markov Chain Monte Carlo-Based Bayesian Approach
    Zhan, Shaodong
    Li, Zhi
    Hu, Jianmin
    Liang, Yiping
    Zhang, Guanglie
    SENSORS, 2018, 18 (12)
  • [34] Marginal reversible jump Markov chain Monte Carlo with application to motor unit number estimation
    Drovandi, Christopher C.
    Pettitt, Anthony N.
    Henderson, Robert D.
    McCombe, Pamela A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 72 : 128 - 146
  • [35] Iterative data detection and decoding using list channel estimation and Markov Chain Monte Carlo
    Mao, Xuehong
    Chen, Rong-Rong
    Farhang-Boroujeny, Behrouz
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 2238 - 2242
  • [36] Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling
    Blasone, Roberta-Serena
    Vrugt, Jasper A.
    Madsen, Henrik
    Rosbjerg, Dan
    Robinson, Bruce A.
    Zyvoloski, George A.
    ADVANCES IN WATER RESOURCES, 2008, 31 (04) : 630 - 648
  • [37] Fuel Quantity Estimation of Aircraft Supplementary Tank Using Markov Chain Monte Carlo Method
    Jaewook Lee
    Bonggyun Kim
    Junmo Yang
    Sangchul Lee
    International Journal of Aeronautical and Space Sciences, 2019, 20 : 1047 - 1054
  • [38] Fuel Quantity Estimation of Aircraft Supplementary Tank Using Markov Chain Monte Carlo Method
    Lee, Jaewook
    Kim, Bonggyun
    Yang, Junmo
    Lee, Sangchul
    INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, 2019, 20 (04) : 1047 - 1054
  • [39] Testing conditional asset pricing models using a Markov Chain Monte Carlo approach
    Ammann, Manuel
    Verhofen, Michael
    EUROPEAN FINANCIAL MANAGEMENT, 2008, 14 (03) : 391 - 418
  • [40] Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models
    Gao, Meng
    Zhang, Hui
    COMPUTERS & GEOSCIENCES, 2012, 44 : 70 - 77