RELIABILITY OF GENOTYPE-SPECIFIC PARAMETER ESTIMATION FOR CROP MODELS: INSIGHTS FROM A MARKOV CHAIN MONTE-CARLO ESTIMATION APPROACH

被引:7
|
作者
Acharya, S. [1 ]
Correll, M. [2 ]
Jones, J. W. [2 ]
Boote, K. J. [3 ]
Alderman, P. D. [4 ]
Hu, Z. [2 ]
Vallejos, C. E. [5 ]
机构
[1] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Agr & Biol Engn, Gainesville, FL USA
[3] Univ Florida, Dept Agron, Gainesville, FL 32611 USA
[4] Oklahoma State Univ, Dept Plant & Soil Sci, Stillwater, OK 74078 USA
[5] Univ Florida, Dept Hort Sci, Gainesville, FL USA
基金
美国国家科学基金会;
关键词
Crop models; Equifinality; Genotype-specific parameters; Markov chain Monte-Carlo; Parameterization; GENETIC COEFFICIENTS; PEANUT LINES; CULTIVAR COEFFICIENTS; UNCERTAINTY ANALYSIS; BAYESIAN-APPROACH; PERFORMANCE; GLUE; EQUIFINALITY; SENSITIVITY; SIMULATION;
D O I
10.13031/trans.12183
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Parameter estimation is a critical step in successful application of dynamic crop models to simulate crop growth and yield under various climatic and management scenarios. Although inverse modeling parameterization techniques significantly improve the predictive capabilities of models, whether these approaches can recover the true parameter values of a specific genotype or cultivar is seldom investigated. In this study, we applied a Markov Chain Monte-Carlo (MCMC) method to the DSSAT dry bean model to estimate (recover) the genotype-specific parameters (GSPs) of 150 synthetic recombinant inbred lines (RILs) of dry bean. The synthetic parents of the population were assigned contrasting GSP values obtained from a database, and each of these GSPs was associated with several quantitative trait loci. A standard inverse modeling approach that simultaneously estimated all GSPs generated a set of values that could reproduce the original synthetic observations, but many of the estimated GSP values significantly differed from the original values. However, when parameter estimation was carried out sequentially in a stepwise manner, according to the genetically controlled plant development process, most of the estimated parameters had values similar to the original values. Developmental parameters were more accurately estimated than those related to dry mass accumulation. This new approach appears to reduce the problem of equifinality in parameter estimation, and it is especially relevant if attempts are made to relate parameter values to individual genes.
引用
收藏
页码:1699 / 1712
页数:14
相关论文
共 50 条
  • [1] Parameter estimation in deformable models using Markov chain Monte Carlo
    Chalana, V
    Haynor, DR
    Sampson, PD
    Kim, YM
    IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 287 - 298
  • [2] Probabilistic parameter estimation of activated sludge processes using Markov Chain Monte Carlo
    Sharifi, Soroosh
    Murthy, Sudhir
    Takacs, Imre
    Massoudieh, Arash
    WATER RESEARCH, 2014, 50 : 254 - 266
  • [3] Markov chain Monte Carlo methods for parameter estimation of the modified Weibull distribution
    Jiang, H.
    Xie, M.
    Tang, L. C.
    JOURNAL OF APPLIED STATISTICS, 2008, 35 (06) : 647 - 658
  • [4] A Markov Chain Monte Carlo approach for the estimation of photovoltaic system parameters
    Laevens, Benjamin P. M.
    Pijpers, Frank P.
    Boonstra, Harm Jan
    Sark, Wilfried G. J. H. M.
    ten Bosch, Olav
    SOLAR ENERGY, 2023, 265
  • [5] Bayesian estimation of NIG models via Markov chain Monte Carlo methods
    Karlis, D
    Lillestöl, J
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2004, 20 (04) : 323 - 338
  • [6] On quantile estimation and Markov chain Monte Carlo convergence
    Brooks, SP
    Roberts, GO
    BIOMETRIKA, 1999, 86 (03) : 710 - 717
  • [7] Complex-valued Bayesian parameter estimation via Markov chain Monte Carlo
    Liu, Ying
    Li, Chunguang
    INFORMATION SCIENCES, 2016, 326 : 334 - 349
  • [8] Correlations between parameters in risk models: Estimation and propagation of uncertainty by Markov Chain Monte Carlo
    Ades, AE
    Lu, G
    RISK ANALYSIS, 2003, 23 (06) : 1165 - 1172
  • [9] EM versus Markov chain Monte Carlo for Estimation of Hidden Markov Models: A Computational Perspective
    Ryden, Tobias
    BAYESIAN ANALYSIS, 2008, 3 (04): : 659 - 688
  • [10] Parameter Estimation in Population Balance through Bayesian Technique Markov Chain Monte Carlo
    Moura, Carlos H. R.
    Viegas, Bruno M.
    Tavares, Maria R. M.
    Macedo, Emanuel N.
    Estumano, Diego C.
    Quaresma, Joao N. N.
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2021, 7 (02): : 890 - 901