Bivariate symbolic regression models for interval-valued variables

被引:46
|
作者
Lima Neto, Eufrasio de A. [1 ]
Cordeiro, Gauss M. [2 ]
de Carvalho, Francisco de A. T. [3 ]
机构
[1] Univ Fed Paraiba, Dept Estat, Ctr Ciencias Exatas & Nat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Rural Pernambuco, Dept Estat & Informat, BR-52171900 Recife, PE, Brazil
[3] Univ Fed Pernambuco, Ctr Informat, BR-50740540 Recife, PE, Brazil
关键词
bivariate symbolic regression method; generalized linear model; deviance; interval-valued data; residual analysis; symbolic data analysis;
D O I
10.1080/00949655.2010.500470
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Interval-valued variables have become very common in data analysis. Up until now, symbolic regression mostly approaches this type of data from an optimization point of view, considering neither the probabilistic aspects of the models nor the nonlinear relationships between the interval response and the interval predictors. In this article, we formulate interval-valued variables as bivariate random vectors and introduce the bivariate symbolic regression model based on the generalized linear models theory which provides much-needed exibility in practice. Important inferential aspects are investigated. Applications to synthetic and real data illustrate the usefulness of the proposed approach.
引用
收藏
页码:1727 / 1744
页数:18
相关论文
共 50 条
  • [31] Lasso Estimation of an Interval-Valued Multiple Regression Model
    Barzana, Marta Garcia
    Colubi, Ana
    Kontoghiorghes, Erricos John
    STRENGTHENING LINKS BETWEEN DATA ANALYSIS AND SOFT COMPUTING, 2015, 315 : 185 - 191
  • [32] Fitting a Least Absolute Deviation Regression Model on Interval-Valued Data
    Santiago Maia, Andre Luis
    de Carvalho, Francisco de A. T.
    ADVANCES IN ARTIFICIAL INTELLIGENCE - SBIA 2008, PROCEEDINGS, 2008, 5249 : 207 - 216
  • [33] A clusterwise nonlinear regression algorithm for interval-valued data
    de Carvalho, Francisco de A. T.
    Lima Neto, Eufrasio de A.
    da Silva, Kassio C. F.
    INFORMATION SCIENCES, 2021, 555 : 357 - 385
  • [34] Functional linear models for interval-valued data
    Beyaztas, Ufuk
    Shang, Han Lin
    Abdel-Salam, Abdel-Salam G.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (07) : 3513 - 3532
  • [35] Robust interval support vector interval regression networks for interval-valued data with outliers
    Chuang, Chen-Chia
    Su, Shun-Feng
    Li, Chih-Wen
    Jeng, Jin-Tsong
    Hsiao, Chih-Ching
    2014 JOINT 7TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 15TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS), 2014, : 1290 - 1295
  • [36] Monitoring photochemical pollutants based on symbolic interval-valued data analysis
    Liang-Ching Lin
    Meihui Guo
    Sangyeol Lee
    Advances in Data Analysis and Classification, 2023, 17 : 897 - 926
  • [37] A Pattern Classifier for Interval-valued Data Based on Multinomial Logistic Regression Model
    de Barros, Alberto Pereira
    Tenorio de Carvalho, Francisco de Assis
    Lima Neto, Eufrasio de Andrade
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 541 - 546
  • [38] Monitoring photochemical pollutants based on symbolic interval-valued data analysis
    Lin, Liang-Ching
    Guo, Meihui
    Lee, Sangyeol
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2023, 17 (04) : 897 - 926
  • [39] Symbolic Covariance Principal Component Analysis and Visualization for Interval-Valued Data
    Le-Rademacher, Jennifer
    Billard, Lynne
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (02) : 413 - 432
  • [40] Ordinal classification for interval-valued data and interval-valued functional data
    Alcacer, Aleix
    Martinez-Garcia, Marina
    Epifanio, Irene
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238