Bivariate symbolic regression models for interval-valued variables

被引:46
|
作者
Lima Neto, Eufrasio de A. [1 ]
Cordeiro, Gauss M. [2 ]
de Carvalho, Francisco de A. T. [3 ]
机构
[1] Univ Fed Paraiba, Dept Estat, Ctr Ciencias Exatas & Nat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Rural Pernambuco, Dept Estat & Informat, BR-52171900 Recife, PE, Brazil
[3] Univ Fed Pernambuco, Ctr Informat, BR-50740540 Recife, PE, Brazil
关键词
bivariate symbolic regression method; generalized linear model; deviance; interval-valued data; residual analysis; symbolic data analysis;
D O I
10.1080/00949655.2010.500470
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Interval-valued variables have become very common in data analysis. Up until now, symbolic regression mostly approaches this type of data from an optimization point of view, considering neither the probabilistic aspects of the models nor the nonlinear relationships between the interval response and the interval predictors. In this article, we formulate interval-valued variables as bivariate random vectors and introduce the bivariate symbolic regression model based on the generalized linear models theory which provides much-needed exibility in practice. Important inferential aspects are investigated. Applications to synthetic and real data illustrate the usefulness of the proposed approach.
引用
收藏
页码:1727 / 1744
页数:18
相关论文
共 50 条
  • [1] Regression Models for Symbolic Interval-Valued Variables
    Chacon, Jose Emmanuel
    Rodriguez, Oldemar
    ENTROPY, 2021, 23 (04)
  • [2] Nonlinear Regression Model to Symbolic Interval-valued Variables
    Lima Neto, Eufrasio de Andrade
    Tenorio de Carvalho, Francisco de Assis
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 1246 - +
  • [3] A bivariate Bayesian method for interval-valued regression models
    Xu, Min
    Qin, Zhongfeng
    KNOWLEDGE-BASED SYSTEMS, 2022, 235
  • [4] Multiple Linear Regression Models on Interval-valued Dengue Data with Interval-valued Climatic Variables
    Attanayake, A. M. C. H.
    Perera, S. S. N.
    Liyanage, U. P.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2020, 59 (03): : 49 - 60
  • [5] Interval Fuzzy c-Regression Models with Competitive Agglomeration for Symbolic Interval-Valued Data
    Chuang, Chen-Chia
    Jeng, Jin-Tsong
    Lin, Wei-Yang
    Hsiao, Chih-Ching
    Tao, Chin-Wang
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2020, 22 (03) : 891 - 900
  • [6] Interval Fuzzy c-Regression Models with Competitive Agglomeration for Symbolic Interval-Valued Data
    Chen-Chia Chuang
    Jin-Tsong Jeng
    Wei-Yang Lin
    Chih-Ching Hsiao
    Chin-Wang Tao
    International Journal of Fuzzy Systems, 2020, 22 : 891 - 900
  • [7] Regression model for interval-valued variables based on copulas
    Lima Neto, Eufrasio de A.
    dos Anjos, Ulisses U.
    JOURNAL OF APPLIED STATISTICS, 2015, 42 (09) : 2010 - 2029
  • [8] Linear regression with interval-valued data
    Sun, Yan
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2016, 8 (01): : 54 - 60
  • [9] A Bayesian parametrized method for interval-valued regression models
    Xu, Min
    Qin, Zhongfeng
    STATISTICS AND COMPUTING, 2023, 33 (03)
  • [10] A Bayesian parametrized method for interval-valued regression models
    Min Xu
    Zhongfeng Qin
    Statistics and Computing, 2023, 33 (3)