Estimation of space-time branching process models in seismology using an EM-type algorithm

被引:180
作者
Veen, Alejandro [1 ]
Schoenberg, Frederic P. [2 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
branching process models; earthquakes; epidemic-type aftershock sequence model; expectation-maximization algorithm; maximum likelihood; space-time point process models;
D O I
10.1198/016214508000000148
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Maximum likelihood estimation of branching point process models via numerical optimization procedures can be unstable and computationally intensive. We explore an alternative estimation method based on the expectation-maximization algorithm. The method involves viewing the estimation of such branching processes as analogous to incomplete data problems. Using an application from seismology, we show how the epidemic-type aftershock sequence (ETAS) model can, in fact, be estimated this way, and we propose a computationally efficient procedure to maximize the expected complete data log-likelihood function. Using a space-time ETAS model, we demonstrate that this method is extremely robust and accurate and use it to estimate declustered background seismicity rates of geologically distinct regions in Southern California. All regions show similar declustered background intensity estimates except for the one covering the southern section of the San Andreas fault system to the east of San Diego in which a substantially higher intensity is observed.
引用
收藏
页码:614 / 624
页数:11
相关论文
共 37 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
Akaike H., 1977, Applications of statistics
[3]  
[Anonymous], 1996, The EM Algorithm and Extensions
[4]  
COX DR, 1975, BIOMETRIKA, V62, P269, DOI 10.1093/biomet/62.2.269
[5]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[6]   A common origin for aftershocks, foreshocks, and multiplets [J].
Felzer, KR ;
Abercrombie, RE ;
Ekström, G .
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2004, 94 (01) :88-98
[7]  
Ferguson TS., 2020, A Course in Large Sample Theory
[8]  
FETZER KR, 2002, J GEOPHYS RES, V107, P2190
[10]  
Gutenberg B., 1944, Bull. Seismol. Soc. Am., V34, P185, DOI [DOI 10.1785/BSSA0340040185, 10.1785/BSSA0340040185]